IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2001.03099.html
   My bibliography  Save this paper

Using Networks and Partial Differential Equations to Predict Bitcoin Price

Author

Listed:
  • Yufang Wang
  • Haiyan Wang

Abstract

Over the past decade, the blockchain technology and its Bitcoin cryptocurrency have received considerable attention. Bitcoin has experienced significant price swings in daily and long-term valuations. In this paper, we propose a partial differential equation (PDE) model on the bitcoin transaction network for predicting bitcoin price. Through analysis of bitcoin subgraphs or chainlets, the PDE model captures the influence of transaction patterns on bitcoin price over time and combines the effect of all chainlet clusters. In addition, Google Trends Index is incorporated to the PDE model to reflect the effect of bitcoin market sentiment. The experiment shows that the average accuracy of daily bitcoin price prediction is 0.82 for 362 consecutive days in 2017. The results demonstrate the PDE model is capable of predicting bitcoin price. The paper is the first attempt to apply a PDE model to the bitcoin transaction network for predicting bitcoin price.

Suggested Citation

  • Yufang Wang & Haiyan Wang, 2020. "Using Networks and Partial Differential Equations to Predict Bitcoin Price," Papers 2001.03099, arXiv.org.
  • Handle: RePEc:arx:papers:2001.03099
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2001.03099
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:men:wpaper:58_2015 is not listed on IDEAS
    2. Pavel Ciaian & Miroslava Rajcaniova & d’Artis Kancs, 2016. "The economics of BitCoin price formation," Applied Economics, Taylor & Francis Journals, vol. 48(19), pages 1799-1815, April.
    3. Atsalakis, George S. & Atsalaki, Ioanna G. & Pasiouras, Fotios & Zopounidis, Constantin, 2019. "Bitcoin price forecasting with neuro-fuzzy techniques," European Journal of Operational Research, Elsevier, vol. 276(2), pages 770-780.
    4. Akcora, Cuneyt Gurcan & Dixon, Matthew F. & Gel, Yulia R. & Kantarcioglu, Murat, 2018. "Bitcoin risk modeling with blockchain graphs," Economics Letters, Elsevier, vol. 173(C), pages 138-142.
    5. Jaroslav Bukovina & Matus Marticek, 2016. "Sentiment and Bitcoin Volatility," MENDELU Working Papers in Business and Economics 2016-58, Mendel University in Brno, Faculty of Business and Economics.
    6. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    7. Cuneyt Akcora & Matthew Dixon & Yulia Gel & Murat Kantarcioglu, 2018. "Bitcoin Risk Modeling with Blockchain Graphs," Papers 1805.04698, arXiv.org.
    8. Koutmos, Dimitrios, 2018. "Bitcoin returns and transaction activity," Economics Letters, Elsevier, vol. 167(C), pages 81-85.
    9. Kurbucz, Marcell Tamás, 2019. "Predicting the price of Bitcoin by the most frequent edges of its transaction network," Economics Letters, Elsevier, vol. 184(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rico-Peña, Juan Jesús & Arguedas-Sanz, Raquel & López-Martin, Carmen, 2023. "Models used to characterise blockchain features. A systematic literature review and bibliometric analysis," Technovation, Elsevier, vol. 123(C).
    2. Yishun Liu & Chunhua Yang & Keke Huang & Weiping Liu, 2023. "A Multi-Factor Selection and Fusion Method through the CNN-LSTM Network for Dynamic Price Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    2. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    3. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    4. Zhou, Siwen, 2018. "Exploring the Driving Forces of the Bitcoin Exchange Rate Dynamics: An EGARCH Approach," MPRA Paper 89445, University Library of Munich, Germany.
    5. Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
    6. Gaies, Brahim & Nakhli, Mohamed Sahbi & Sahut, Jean Michel & Guesmi, Khaled, 2021. "Is Bitcoin rooted in confidence? – Unraveling the determinants of globalized digital currencies," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    7. Rico-Peña, Juan Jesús & Arguedas-Sanz, Raquel & López-Martin, Carmen, 2023. "Models used to characterise blockchain features. A systematic literature review and bibliometric analysis," Technovation, Elsevier, vol. 123(C).
    8. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    9. Gianna Figà-Talamanca & Marco Patacca, 2020. "Disentangling the relationship between Bitcoin and market attention measures," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 71-91, March.
    10. Gianna Figá-Talamanca & Marco Patacca, 2019. "Does market attention affect Bitcoin returns and volatility?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 135-155, June.
    11. Kurbucz, Marcell Tamás, 2019. "Predicting the price of Bitcoin by the most frequent edges of its transaction network," Economics Letters, Elsevier, vol. 184(C).
    12. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    13. Xun Zhang & Fengbin Lu & Rui Tao & Shouyang Wang, 2021. "The time-varying causal relationship between the Bitcoin market and internet attention," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-19, December.
    14. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2022. "Cryptocurrency returns under empirical asset pricing," International Review of Financial Analysis, Elsevier, vol. 82(C).
    15. Baig, Ahmed & Blau, Benjamin M. & Sabah, Nasim, 2019. "Price clustering and sentiment in bitcoin," Finance Research Letters, Elsevier, vol. 29(C), pages 111-116.
    16. Rehman, Mobeen Ur, 2020. "Do bitcoin and precious metals do any good together? An extreme dependence and risk spillover analysis," Resources Policy, Elsevier, vol. 68(C).
    17. Kajtazi, Anton & Moro, Andrea, 2019. "The role of bitcoin in well diversified portfolios: A comparative global study," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 143-157.
    18. Chen, Conghui & Liu, Lanlan, 2022. "How effective is China's cryptocurrency trading ban?," Finance Research Letters, Elsevier, vol. 46(PB).
    19. Michael L. Polemis & Mike G. Tsionas, 2023. "The environmental consequences of blockchain technology: A Bayesian quantile cointegration analysis for Bitcoin," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1602-1621, April.
    20. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2001.03099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.