IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1911.06552.html
   My bibliography  Save this paper

An approximate solution for the power utility optimization under predictable returns

Author

Listed:
  • Dmytro Ivasiuk

Abstract

This work derives an approximate analytical single period solution of the portfolio choice problem for the power utility function. It is possible to do so if we consider that the asset returns follow a multivariate normal distribution. It is shown in the literature that the log-normal distribution seems to be a good proxy of the normal distribution in case if the standard deviation of the last one is way smaller than its mean. So we can use this property because this happens to be true for gross portfolio returns. In addition, we present a different solution method that relies on the machine learning algorithm called Gradient Descent. It is a powerful tool to solve a wide range of problems, and it was possible to implement this approach to portfolio selection. Besides, the paper provides a simulation study, where we compare the derived results with the well-known solution, which uses a Taylor series expansion of the utility function.

Suggested Citation

  • Dmytro Ivasiuk, 2019. "An approximate solution for the power utility optimization under predictable returns," Papers 1911.06552, arXiv.org, revised Oct 2021.
  • Handle: RePEc:arx:papers:1911.06552
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1911.06552
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael W. Brandt & Pedro Santa‐Clara, 2006. "Dynamic Portfolio Selection by Augmenting the Asset Space," Journal of Finance, American Finance Association, vol. 61(5), pages 2187-2217, October.
    2. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    3. Elçin Çetinkaya & Aurélie Thiele, 2016. "A moment matching approach to log-normal portfolio optimization," Computational Management Science, Springer, vol. 13(4), pages 501-520, October.
    4. Stefano Herzel & Marco Nicolosi, 2019. "Optimal strategies with option compensation under mean reverting returns or volatilities," Computational Management Science, Springer, vol. 16(1), pages 47-69, February.
    5. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2015. "On the exact solution of the multi-period portfolio choice problem for an exponential utility under return predictability," European Journal of Operational Research, Elsevier, vol. 246(2), pages 528-542.
    6. Campbell, John Y. & Viceira, Luis M., 2002. "Strategic Asset Allocation: Portfolio Choice for Long-Term Investors," OUP Catalogue, Oxford University Press, number 9780198296942.
    7. Mark Broadie & Weiwei Shen, 2017. "Numerical solutions to dynamic portfolio problems with upper bounds," Computational Management Science, Springer, vol. 14(2), pages 215-227, April.
    8. Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2015. "A closed-form solution of the multi-period portfolio choice problem for a quadratic utility function," Annals of Operations Research, Springer, vol. 229(1), pages 121-158, June.
    9. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    10. Taras Bodnar & Dmytro Ivasiuk & Nestor Parolya & Wofgang Schmid, 2018. "Mean-Variance Efficiency of Optimal Power and Logarithmic Utility Portfolios," Papers 1806.08005, arXiv.org, revised May 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taras Bodnar & Dmytro Ivasiuk & Nestor Parolya & Wofgang Schmid, 2018. "Mean-Variance Efficiency of Optimal Power and Logarithmic Utility Portfolios," Papers 1806.08005, arXiv.org, revised May 2019.
    2. Taras Bodnar & Dmytro Ivasiuk & Nestor Parolya & Wolfgang Schmid, 2023. "Multi-period power utility optimization under stock return predictability," Computational Management Science, Springer, vol. 20(1), pages 1-27, December.
    3. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    4. Martin D. D. Evans & Viktoria Hnatkovska, 2005. "Solving General Equilibrium Models with Incomplete Markets and Many Assets," NBER Technical Working Papers 0318, National Bureau of Economic Research, Inc.
    5. Mark E. Wohar & David E. Rapach, 2005. "Return Predictability and the Implied Intertemporal Hedging Demands for Stocks and Bonds: International Evidence," Computing in Economics and Finance 2005 329, Society for Computational Economics.
    6. Hui Chen & Nengjiu Ju & Jianjun Miao, 2014. "Dynamic Asset Allocation with Ambiguous Return Predictability," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 17(4), pages 799-823, October.
    7. Engsted, Tom & Pedersen, Thomas Q., 2012. "Return predictability and intertemporal asset allocation: Evidence from a bias-adjusted VAR model," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 241-253.
    8. Guidolin, Massimo & Timmermann, Allan, 2007. "Asset allocation under multivariate regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3503-3544, November.
    9. Jimmy E. Hilliard & Jitka Hilliard, 2018. "Rebalancing versus buy and hold: theory, simulation and empirical analysis," Review of Quantitative Finance and Accounting, Springer, vol. 50(1), pages 1-32, January.
    10. Legendre, François & Togola, Djibril, 2016. "Explicit solutions to dynamic portfolio choice problems: A continuous-time detour," Economic Modelling, Elsevier, vol. 58(C), pages 627-641.
    11. Bauder, David & Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2020. "Bayesian inference of the multi-period optimal portfolio for an exponential utility," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    12. Evans, Martin D.D. & Hnatkovska, Viktoria, 2012. "A method for solving general equilibrium models with incomplete markets and many financial assets," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1909-1930.
    13. Kontosakos, Vasileios E. & Hwang, Soosung & Kallinterakis, Vasileios & Pantelous, Athanasios A., 2024. "Long-term dynamic asset allocation under asymmetric risk preferences," European Journal of Operational Research, Elsevier, vol. 312(2), pages 765-782.
    14. Didier, Tatiana & Lowenkron, Alexandre, 2012. "The current account as a dynamic portfolio choice problem," Journal of the Japanese and International Economies, Elsevier, vol. 26(4), pages 518-541.
    15. Hoevenaars, Roy P.M.M. & Molenaar, Roderick D.J. & Schotman, Peter C. & Steenkamp, Tom B.M., 2008. "Strategic asset allocation with liabilities: Beyond stocks and bonds," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2939-2970, September.
    16. Laborda, Ricardo & Olmo, Jose, 2017. "Optimal asset allocation for strategic investors," International Journal of Forecasting, Elsevier, vol. 33(4), pages 970-987.
    17. John Y. Campbell & Luis M. Viceira, 2005. "The Term Structure of the Risk–Return Trade-Off," Financial Analysts Journal, Taylor & Francis Journals, vol. 61(1), pages 34-44, January.
    18. Andrea Buraschi & Andrea Carnelli, 2013. "The economic value of predictability in portfolio management," Journal of Financial Management, Markets and Institutions, Società editrice il Mulino, issue 1, pages 5-22, January.
    19. Bodnar, Taras & Mazur, Stepan & Okhrin, Yarema, 2017. "Bayesian estimation of the global minimum variance portfolio," European Journal of Operational Research, Elsevier, vol. 256(1), pages 292-307.
    20. Martin B. Haugh & Leonid Kogan & Jiang Wang, 2006. "Evaluating Portfolio Policies: A Duality Approach," Operations Research, INFORMS, vol. 54(3), pages 405-418, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1911.06552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.