IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v13y2016i4d10.1007_s10287-016-0255-4.html
   My bibliography  Save this article

A moment matching approach to log-normal portfolio optimization

Author

Listed:
  • Elçin Çetinkaya

    (Amazon.com)

  • Aurélie Thiele

    (Lehigh University)

Abstract

We consider the problem where a manager aims to minimize the probability of his portfolio return falling below a threshold while keeping the expected return no worse than a target, under the assumption that stock returns are Log-Normally distributed. This assumption, common in the finance literature for daily and weekly returns, creates computational difficulties because the distribution of the portfolio return is difficult to estimate precisely. We approximate it with a single Log-Normal random variable using the Fenton–Wilkinson method and investigate an iterative, data-driven approximation to the problem. We propose a two-stage solution approach, where the first stage requires solving a classic mean-variance optimization model and the second step involves solving an unconstrained nonlinear problem with a smooth objective function. We suggest an iterative calibration method to improve the accuracy of the method and test its performance against a Generalized Pareto Distribution approximation. We also extend our results to the design of basket options.

Suggested Citation

  • Elçin Çetinkaya & Aurélie Thiele, 2016. "A moment matching approach to log-normal portfolio optimization," Computational Management Science, Springer, vol. 13(4), pages 501-520, October.
  • Handle: RePEc:spr:comgts:v:13:y:2016:i:4:d:10.1007_s10287-016-0255-4
    DOI: 10.1007/s10287-016-0255-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-016-0255-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-016-0255-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deelstra, G. & Liinev, J. & Vanmaele, M., 2004. "Pricing of arithmetic basket options by conditioning," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 55-77, February.
    2. Griselda Deelstra & Jan Liinev & Michèle Vanmaele, 2004. "Pricing of arithmetic basket options by conditioning," ULB Institutional Repository 2013/7600, ULB -- Universite Libre de Bruxelles.
    3. Levy, Edmond, 1992. "Pricing European average rate currency options," Journal of International Money and Finance, Elsevier, vol. 11(5), pages 474-491, October.
    4. Michael Curran, 1994. "Valuing Asian and Portfolio Options by Conditioning on the Geometric Mean Price," Management Science, INFORMS, vol. 40(12), pages 1705-1711, December.
    5. Michal Kaut & Hercules Vladimirou & Stein W. Wallace & Stavros A. Zenios, 2007. "Stability analysis of portfolio management with conditional value-at-risk," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 397-409.
    6. Ronald Hochreiter & Georg Pflug, 2007. "Financial scenario generation for stochastic multi-stage decision processes as facility location problems," Annals of Operations Research, Springer, vol. 152(1), pages 257-272, July.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Michal Kaut & Stein Wallace, 2011. "Shape-based scenario generation using copulas," Computational Management Science, Springer, vol. 8(1), pages 181-199, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dmytro Ivasiuk, 2019. "An approximate solution for the power utility optimization under predictable returns," Papers 1911.06552, arXiv.org, revised Oct 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruggero Caldana & Gianluca Fusai & Alessandro Gnoatto & Martino Grasselli, 2016. "General closed-form basket option pricing bounds," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 535-554, April.
    2. Leccadito, Arturo & Paletta, Tommaso & Tunaru, Radu, 2016. "Pricing and hedging basket options with exact moment matching," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 59-69.
    3. Xu, Guoping & Zheng, Harry, 2009. "Approximate basket options valuation for a jump-diffusion model," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 188-194, October.
    4. Yijuan Liang & Xiuchuan Xu, 2019. "Variance and Dimension Reduction Monte Carlo Method for Pricing European Multi-Asset Options with Stochastic Volatilities," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    5. Guoping Xu & Harry Zheng, 2012. "Lower Bound Approximation to Basket Option Values for Local Volatility Jump-Diffusion Models," Papers 1212.3147, arXiv.org, revised Oct 2013.
    6. Jaehyuk Choi, 2018. "Sum of all Black–Scholes–Merton models: An efficient pricing method for spread, basket, and Asian options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 627-644, June.
    7. Michèle Vanmaele & Griselda Deelstra & Jan Liinev, 2004. "Approximation of stop-loss premiums involving sums of lognormals by conditioning on two variables," ULB Institutional Repository 2013/7604, ULB -- Universite Libre de Bruxelles.
    8. Vanmaele, Michele & Deelstra, Griselda & Liinev, Jan, 2004. "Approximation of stop-loss premiums involving sums of lognormals by conditioning on two variables," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 343-367, October.
    9. Jinke Zhou & Xiaolu Wang, 2008. "Accurate closed‐form approximation for pricing Asian and basket options," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(4), pages 343-358, July.
    10. Georges Dionne & Genevieve Gauthier & Nadia Ouertani & Nabil Tahani, 2011. "Heterogeneous Basket Options Pricing Using Analytical Approximations," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 47-85, March - J.
    11. Ng, Andrew C.Y. & Li, Johnny Siu-Hang & Chan, Wai-Sum, 2013. "Pricing options on stocks denominated in different currencies: Theory and illustrations," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 339-354.
    12. Dingeç, Kemal Dinçer & Hörmann, Wolfgang, 2013. "Control variates and conditional Monte Carlo for basket and Asian options," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 421-434.
    13. Hideharu Funahashi & Masaaki Kijima, 2013. "An Extension of the Chaos Expansion Approximation for the Pricing of Exotic Basket Options ," KIER Working Papers 857, Kyoto University, Institute of Economic Research.
    14. Kwangil Bae, 2019. "Valuation and applications of compound basket options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(6), pages 704-720, June.
    15. Hatem Ben-Ameur & Michèle Breton & Pierre L'Ecuyer, 2002. "A Dynamic Programming Procedure for Pricing American-Style Asian Options," Management Science, INFORMS, vol. 48(5), pages 625-643, May.
    16. Grzegorz Darkiewicz & Griselda Deelstra & Jan Dhaene & Tom Hoedemakers & Michèle Vanmaele, 2009. "Bounds for Right Tails of Deterministic and Stochastic Sums of Random Variables," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 847-866, December.
    17. Yu, Bo & Zhu, Hongmei & Wu, Ping, 2022. "The closed-form approximation to price basket options under stochastic interest rate," Finance Research Letters, Elsevier, vol. 46(PB).
    18. Dai, Min & Li, Peifan & Zhang, Jin E., 2010. "A lattice algorithm for pricing moving average barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 542-554, March.
    19. Alexandre Petkovic, 2009. "Three essays on exotic option pricing, multivariate Lévy processes and linear aggregation of panel models," ULB Institutional Repository 2013/210357, ULB -- Universite Libre de Bruxelles.
    20. Geon Ho Choe & Minseok Kim, 2021. "Closed‐form lower bounds for the price of arithmetic average Asian options by multiple conditioning," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(12), pages 1916-1932, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:13:y:2016:i:4:d:10.1007_s10287-016-0255-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.