Time-inconsistency with rough volatility
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ying Hu & Hanqing Jin & Xun Yu Zhou, 2012. "Time-Inconsistent Stochastic Linear--Quadratic Control," Post-Print hal-00691816, HAL.
- Jim Gatheral & Martin Keller-Ressel, 2019. "Affine forward variance models," Finance and Stochastics, Springer, vol. 23(3), pages 501-533, July.
- Jean-Pierre Fouque & Ruimeng Hu, 2017. "Optimal Portfolio under Fast Mean-reverting Fractional Stochastic Environment," Papers 1706.03139, arXiv.org, revised Feb 2018.
- Bingyan Han & Hoi Ying Wong, 2019. "Merton's portfolio problem under Volterra Heston model," Papers 1905.05371, arXiv.org, revised Nov 2019.
- Tomas Björk & Agatha Murgoci, 2014. "A theory of Markovian time-inconsistent stochastic control in discrete time," Finance and Stochastics, Springer, vol. 18(3), pages 545-592, July.
- Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
- Suleyman Basak & Georgy Chabakauri, 2010.
"Dynamic Mean-Variance Asset Allocation,"
The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
- Basak, Suleyman & Chabakauri, Georgy, 2009. "Dynamic Mean-Variance Asset Allocation," CEPR Discussion Papers 7256, C.E.P.R. Discussion Papers.
- Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
- Masaaki Fukasawa & Tetsuya Takabatake & Rebecca Westphal, 2019. "Is Volatility Rough ?," Papers 1905.04852, arXiv.org, revised May 2019.
- Holger Kraft, 2005. "Optimal portfolios and Heston's stochastic volatility model: an explicit solution for power utility," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 303-313.
- Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
- Jean‐Pierre Fouque & Ruimeng Hu, 2019. "Optimal portfolio under fractional stochastic environment," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 697-734, July.
- Ying Hu & Hanqing Jin & Xun Yu Zhou, 2017. "Time-Inconsistent Stochastic Linear--Quadratic Control: Characterization and Uniqueness of Equilibrium," Post-Print hal-01139343, HAL.
- Bruno Dupire, 2019. "Functional Itô calculus," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 721-729, May.
- Masaaki Fukasawa, 2011. "Asymptotic analysis for stochastic volatility: martingale expansion," Finance and Stochastics, Springer, vol. 15(4), pages 635-654, December.
- Tomas Björk & Mariana Khapko & Agatha Murgoci, 2017. "On time-inconsistent stochastic control in continuous time," Finance and Stochastics, Springer, vol. 21(2), pages 331-360, April.
- Bingyan Han & Hoi Ying Wong, 2019. "Mean-variance portfolio selection under Volterra Heston model," Papers 1904.12442, arXiv.org, revised Jan 2020.
- Christoph Czichowsky, 2013. "Time-consistent mean-variance portfolio selection in discrete and continuous time," Finance and Stochastics, Springer, vol. 17(2), pages 227-271, April.
- Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
- Tomas Björk & Agatha Murgoci & Xun Yu Zhou, 2014. "Mean–Variance Portfolio Optimization With State-Dependent Risk Aversion," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 1-24, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.
- Benjamin James Duthie, 2019. "Portfolio optimisation under rough Heston models," Papers 1909.02972, arXiv.org.
- Marcel Nutz & Yuchong Zhang, 2019. "Conditional Optimal Stopping: A Time-Inconsistent Optimization," Papers 1901.05802, arXiv.org, revised Oct 2019.
- Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023.
"Local volatility under rough volatility,"
Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
- Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2022. "Local volatility under rough volatility," Papers 2204.02376, arXiv.org, revised Nov 2022.
- Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.
- Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
- Etienne Chevalier & Sergio Pulido & Elizabeth Z'u~niga, 2021. "American options in the Volterra Heston model," Papers 2103.11734, arXiv.org, revised May 2022.
- Han, Bingyan & Wong, Hoi Ying, 2021. "Merton’s portfolio problem under Volterra Heston model," Finance Research Letters, Elsevier, vol. 39(C).
- De Gennaro Aquino, Luca & Sornette, Didier & Strub, Moris S., 2023. "Portfolio selection with exploration of new investment assets," European Journal of Operational Research, Elsevier, vol. 310(2), pages 773-792.
- Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022.
"Short-dated smile under rough volatility: asymptotics and numerics,"
Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.
- Peter K. Friz & Paul Gassiat & Paolo Pigato, 2020. "Short dated smile under Rough Volatility: asymptotics and numerics," Papers 2009.08814, arXiv.org, revised Sep 2021.
- Bingyan Han & Hoi Ying Wong, 2019. "Mean-variance portfolio selection under Volterra Heston model," Papers 1904.12442, arXiv.org, revised Jan 2020.
- Antoine Jacquier & Alexandre Pannier, 2020. "Large and moderate deviations for stochastic Volterra systems," Papers 2004.10571, arXiv.org, revised Apr 2022.
- Bingyan Han & Chi Seng Pun & Hoi Ying Wong, 2023. "Robust Time-inconsistent Linear-Quadratic Stochastic Controls: A Stochastic Differential Game Approach," Papers 2306.16982, arXiv.org, revised Sep 2024.
- Ling Wang & Mei Choi Chiu & Hoi Ying Wong, 2021. "Time-consistent mean-variance reinsurance-investment problem with long-range dependent mortality rate," Papers 2112.06602, arXiv.org.
- Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
- Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
- Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
- Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
- Camilo Hern'andez & Dylan Possamai, 2020. "Me, myself and I: a general theory of non-Markovian time-inconsistent stochastic control for sophisticated agents," Papers 2002.12572, arXiv.org, revised Jul 2021.
- Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-DGE-2019-08-12 (Dynamic General Equilibrium)
- NEP-ORE-2019-08-12 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.11378. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.