IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v68y2017i2d10.1007_s10898-016-0477-6.html
   My bibliography  Save this article

Equal Risk Bounding is better than Risk Parity for portfolio selection

Author

Listed:
  • Francesco Cesarone

    (Università degli Studi Roma Tre)

  • Fabio Tardella

    (Sapienza Università di Roma)

Abstract

Risk Parity (RP), also called equally weighted risk contribution, is a recent approach to risk diversification for portfolio selection. RP is based on the principle that the fractions of the capital invested in each asset should be chosen so as to make the total risk contributions of all assets equal among them. We show here that the Risk Parity approach is theoretically dominated by an alternative similar approach that does not actually require equally weighted risk contribution of all assets but only an equal upper bound on all such risks. This alternative approach, called Equal Risk Bounding (ERB), requires the solution of a nonconvex quadratically constrained optimization problem. The ERB approach, while starting from different requirements, turns out to be strictly linked to the RP approach. Indeed, when short selling is allowed, we prove that an ERB portfolio is actually an RP portfolio with minimum variance. When short selling is not allowed, there is a unique RP portfolio and it contains all assets in the market. In this case, the ERB approach might lead to the RP portfolio or it might lead to portfolios with smaller variance that do not contain all assets, and where the risk contributions of each asset included in the portfolio is strictly smaller than in the RP portfolio. We define a new riskiness index for assets that allows to identify those assets that are more likely to be excluded from the ERB portfolio. With these tools we then provide an exact method for small size nonconvex ERB models and a very efficient and accurate heuristic for larger problems of this type. In the case of a common constant pairwise correlation among all assets, a closed form solution to the ERB model is obtained and used to perform a parametric analysis when varying the level of correlation. The practical advantages of the ERB approach over the RP strategy are illustrated with some numerical examples. Computational experience on real-world and on simulated data confirms accuracy and efficiency of our heuristic approach to the ERB model also in comparison with some state-of-the-art local and global optimization codes.

Suggested Citation

  • Francesco Cesarone & Fabio Tardella, 2017. "Equal Risk Bounding is better than Risk Parity for portfolio selection," Journal of Global Optimization, Springer, vol. 68(2), pages 439-461, June.
  • Handle: RePEc:spr:jglopt:v:68:y:2017:i:2:d:10.1007_s10898-016-0477-6
    DOI: 10.1007/s10898-016-0477-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-016-0477-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-016-0477-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    2. Bertrand, Philippe & Lapointe, Vincent, 2015. "How performance of risk-based strategies is modified by socially responsible investment universe?," International Review of Financial Analysis, Elsevier, vol. 38(C), pages 175-190.
    3. Roncalli, Thierry, 2013. "Introduction to Risk Parity and Budgeting," MPRA Paper 47679, University Library of Munich, Germany.
    4. repec:bla:jfinan:v:44:y:1989:i:5:p:1435-38 is not listed on IDEAS
    5. Edwin J. Elton & Martin J. Gruber & Jonathan Spitzer, 2006. "Improved Estimates of Correlation Coefficients and their Impact on Optimum Portfolios," European Financial Management, European Financial Management Association, vol. 12(3), pages 303-318, June.
    6. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2013. "A new method for mean-variance portfolio optimization with cardinality constraints," Annals of Operations Research, Springer, vol. 205(1), pages 213-234, May.
    7. Elton, Edwin J & Gruber, Martin J, 1973. "Estimating the Dependence Structure of Share Prices-Implications for Portfolio Selection," Journal of Finance, American Finance Association, vol. 28(5), pages 1203-1232, December.
    8. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
    9. Elton, Edwin J & Gruber, Martin J & Padberg, Manfred W, 1976. "Simple Criteria for Optimal Portfolio Selection," Journal of Finance, American Finance Association, vol. 31(5), pages 1341-1357, December.
    10. repec:dau:papers:123456789/4688 is not listed on IDEAS
    11. Pflug, Georg Ch. & Pichler, Alois & Wozabal, David, 2012. "The 1/N investment strategy is optimal under high model ambiguity," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 410-417.
    12. Anderson, Robert M. & Bianchi, Stephen W. & Goldberg, Lisa R., 2012. "Will My Risk Parity Strategy Outperform?," Department of Economics, Working Paper Series qt23t2s950, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    13. Xi Bai & Katya Scheinberg & Reha Tutuncu, 2016. "Least-squares approach to risk parity in portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 357-376, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricca, Federica & Scozzari, Andrea, 2024. "Portfolio optimization through a network approach: Network assortative mixing and portfolio diversification," European Journal of Operational Research, Elsevier, vol. 312(2), pages 700-717.
    2. Vaughn Gambeta & Roy Kwon, 2020. "Risk Return Trade-Off in Relaxed Risk Parity Portfolio Optimization," JRFM, MDPI, vol. 13(10), pages 1-28, October.
    3. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2020. "An optimization–diversification approach to portfolio selection," Journal of Global Optimization, Springer, vol. 76(2), pages 245-265, February.
    4. Cesarone, Francesco & Mango, Fabiomassimo & Mottura, Carlo Domenico & Ricci, Jacopo Maria & Tardella, Fabio, 2020. "On the stability of portfolio selection models," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 210-234.
    5. Justo Puerto & Moises Rodr'iguez-Madrena & Andrea Scozzari, 2019. "Location and portfolio selection problems: A unified framework," Papers 1907.07101, arXiv.org.
    6. da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023. "Risk budgeting portfolios from simulations," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
    7. Daniel Felix Ahelegbey & Paolo Giudici & Fatemeh Mojtahedi, 2022. "Crypto Asset Portfolio Selection," FinTech, MDPI, vol. 1(1), pages 1-9, February.
    8. Francesco Cesarone & Rosella Giacometti & Manuel Luis Martino & Fabio Tardella, 2023. "A return-diversification approach to portfolio selection," Papers 2312.09707, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2020. "An optimization–diversification approach to portfolio selection," Journal of Global Optimization, Springer, vol. 76(2), pages 245-265, February.
    2. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    3. Francesco Cesarone & Rosella Giacometti & Manuel Luis Martino & Fabio Tardella, 2023. "A return-diversification approach to portfolio selection," Papers 2312.09707, arXiv.org.
    4. Ravi Kashyap, 2024. "The Blockchain Risk Parity Line: Moving From The Efficient Frontier To The Final Frontier Of Investments," Papers 2407.09536, arXiv.org.
    5. Carroll, Rachael & Conlon, Thomas & Cotter, John & Salvador, Enrique, 2017. "Asset allocation with correlation: A composite trade-off," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1164-1180.
    6. Maller, Ross & Roberts, Steven & Tourky, Rabee, 2016. "The large-sample distribution of the maximum Sharpe ratio with and without short sales," Journal of Econometrics, Elsevier, vol. 194(1), pages 138-152.
    7. Stefania Corsaro & Valentina Simone, 2019. "Adaptive $$l_1$$ l 1 -regularization for short-selling control in portfolio selection," Computational Optimization and Applications, Springer, vol. 72(2), pages 457-478, March.
    8. Bruni, Renato & Cesarone, Francesco & Scozzari, Andrea & Tardella, Fabio, 2017. "On exact and approximate stochastic dominance strategies for portfolio selection," European Journal of Operational Research, Elsevier, vol. 259(1), pages 322-329.
    9. Cesarone, Francesco & Mango, Fabiomassimo & Mottura, Carlo Domenico & Ricci, Jacopo Maria & Tardella, Fabio, 2020. "On the stability of portfolio selection models," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 210-234.
    10. Maysam Khodayari Gharanchaei & Prabhu Prasad Panda, 2024. "Constructing an Investment Fund through Stock Clustering and Integer Programming," Papers 2407.05912, arXiv.org.
    11. Justo Puerto & Moises Rodr'iguez-Madrena & Andrea Scozzari, 2019. "Location and portfolio selection problems: A unified framework," Papers 1907.07101, arXiv.org.
    12. Anis, Hassan T. & Kwon, Roy H., 2022. "Cardinality-constrained risk parity portfolios," European Journal of Operational Research, Elsevier, vol. 302(1), pages 392-402.
    13. Isaac T. Tabner, 2012. "In Defence of Capitalisation Weights: Evidence from the FTSE 100 and S&P 500 Indices," European Financial Management, European Financial Management Association, vol. 18(1), pages 142-161, January.
    14. Clarence C. Y. Kwan, 2018. "What really happens if the positive definiteness requirement on the covariance matrix of returns is relaxed in efficient portfolio selection?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 32(1), pages 77-110, February.
    15. Dai, Zhifeng & Wen, Fenghua, 2018. "Some improved sparse and stable portfolio optimization problems," Finance Research Letters, Elsevier, vol. 27(C), pages 46-52.
    16. Oikonomou, Ioannis & Platanakis, Emmanouil & Sutcliffe, Charles, 2018. "Socially responsible investment portfolios: Does the optimization process matter?," The British Accounting Review, Elsevier, vol. 50(4), pages 379-401.
    17. Lauren Stagnol, 2015. "Designing a corporate bond index on solvency criteria," EconomiX Working Papers 2015-39, University of Paris Nanterre, EconomiX.
    18. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
    19. Ammann, Manuel & Coqueret, Guillaume & Schade, Jan-Philip, 2016. "Characteristics-based portfolio choice with leverage constraints," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 23-37.
    20. Tasca, Paolo & Mavrodiev, Pavlin & Schweitzer, Frank, 2014. "Quantifying the impact of leveraging and diversification on systemic risk," Journal of Financial Stability, Elsevier, vol. 15(C), pages 43-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:68:y:2017:i:2:d:10.1007_s10898-016-0477-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.