IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1907.05141.html
   My bibliography  Save this paper

Tempered stable distributions and processes

Author

Listed:
  • Uwe Kuchler
  • Stefan Tappe

Abstract

We investigate the class of tempered stable distributions and their associated processes. Our analysis of tempered stable distributions includes limit distributions, parameter estimation and the study of their densities. Regarding tempered stable processes, we deal with density transformations and compute their $p$-variation indices. Exponential stock models driven by tempered stable processes are discussed as well.

Suggested Citation

  • Uwe Kuchler & Stefan Tappe, 2019. "Tempered stable distributions and processes," Papers 1907.05141, arXiv.org.
  • Handle: RePEc:arx:papers:1907.05141
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1907.05141
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
    2. Bianchi, Michele Leonardo & Rachev, Svetlozar T. & Kim, Young Shin & Fabozzi, Frank J., 2011. "Tempered infinitely divisible distributions and processes," Working Paper Series in Economics 26, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    3. Svetlana I. Boyarchenko & Sergei Z. Levendorskiǐ, 2000. "Option Pricing For Truncated Lévy Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 549-552.
    4. Küchler, Uwe & Tappe, Stefan, 2008. "On the shapes of bilateral Gamma densities," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2478-2484, October.
    5. Mercuri, Lorenzo, 2008. "Option pricing in a Garch model with tempered stable innovations," Finance Research Letters, Elsevier, vol. 5(3), pages 172-182, September.
    6. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Küchler, Uwe & Tappe, Stefan, 2013. "Tempered stable distributions and processes," Stochastic Processes and their Applications, Elsevier, vol. 123(12), pages 4256-4293.
    2. Uwe Kuchler & Stefan Tappe, 2019. "Exponential stock models driven by tempered stable processes," Papers 1907.05142, arXiv.org.
    3. Küchler, Uwe & Tappe, Stefan, 2014. "Exponential stock models driven by tempered stable processes," Journal of Econometrics, Elsevier, vol. 181(1), pages 53-63.
    4. Mancini, Cecilia, 2011. "The speed of convergence of the Threshold estimator of integrated variance," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 845-855, April.
    5. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    6. Yuta Koike, 2014. "An estimator for the cumulative co-volatility of asynchronously observed semimartingales with jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 460-481, June.
    7. Young Shin Kim, 2019. "Tempered stable process, first passage time, and path-dependent option pricing," Computational Management Science, Springer, vol. 16(1), pages 187-215, February.
    8. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    9. Hounyo, Ulrich & Varneskov, Rasmus T., 2017. "A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation," Journal of Econometrics, Elsevier, vol. 198(1), pages 10-28.
    10. Yunfei Xia & Michael Grabchak, 2024. "Pricing multi-asset options with tempered stable distributions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-24, December.
    11. Küchler Uwe & Tappe Stefan, 2009. "Option pricing in bilateral Gamma stock models," Statistics & Risk Modeling, De Gruyter, vol. 27(4), pages 281-307, December.
    12. M A Sánchez-Granero & J E Trinidad-Segovia & J Clara-Rahola & A M Puertas & F J De las Nieves, 2017. "A model for foreign exchange markets based on glassy Brownian systems," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-22, December.
    13. Pérez-Abreu, Victor & Stelzer, Robert, 2014. "Infinitely divisible multivariate and matrix Gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 155-175.
    14. Mancini, Cecilia & Renò, Roberto, 2011. "Threshold estimation of Markov models with jumps and interest rate modeling," Journal of Econometrics, Elsevier, vol. 160(1), pages 77-92, January.
    15. Grabchak, Michael, 2021. "An exact method for simulating rapidly decreasing tempered stable distributions in the finite variation case," Statistics & Probability Letters, Elsevier, vol. 170(C).
    16. Shin Kim, Young & Rachev, Svetlozar T. & Leonardo Bianchi, Michele & Fabozzi, Frank J., 2010. "Tempered stable and tempered infinitely divisible GARCH models," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2096-2109, September.
    17. Svetlana Boyarchenko & Sergei Levendorskii, 2005. "American options: the EPV pricing model," Annals of Finance, Springer, vol. 1(3), pages 267-292, August.
    18. Cecilia Mancini & Fabio Gobbi, 2010. "Identifying the Brownian Covariation from the Co-Jumps Given Discrete Observations," Working Papers - Mathematical Economics 2010-05, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    19. Duong, Diep & Swanson, Norman R., 2015. "Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction," Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
    20. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.05141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.