IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v131y2025ics0305048324001580.html
   My bibliography  Save this article

Embracing market dynamics in the post-COVID era: A data-driven analysis of investor sentiment and behavioral characteristics in stock index futures returns

Author

Listed:
  • Gao, Jie
  • Fan, Chunguo
  • Liu, Ting
  • Bai, Xiuran
  • Li, Wenyong
  • Tan, Huimin

Abstract

This paper aims to enhance the understanding and prediction of stock market behavior during unexpected events like the COVID-19 pandemic, with a specific focus on the role of market attention, social media sentiment indicators, and the development and evolution of unexpected events. We highlight that the common trading and technical indicators used in forecasting the stock index futures prices often overlook investor sentiment and pandemic-related data, which can be instrumental in predicting stock market behavior during significant emergencies. In response, we propose a multi-faceted approach that incorporates these overlooked factors. First, we enhance the predictive index system by integrating investor sentiment, derived from stock message board commentary, and investor behavior influenced by the development and evolution of the pandemic. This innovative approach refines our model's predictive capabilities and is validated through comparative analysis. Second, we introduce a hybrid framework for predicting stock index futures closing prices. By decomposing the closing price series into long-term trends, cyclical variations, and random fluctuations, we create a more nuanced forecast. Each component is predicted separately using appropriate time-series algorithms, improving the overall predictive accuracy and offering generalizability and scalability. Third, we devise a dynamic trading strategy that recognizes pandemic-related data, evolving over time, as a pivotal factor. This strategy is adaptable to evolving market conditions, and our experimental evidence demonstrates its effectiveness in yielding higher returns and reducing associated risks. Our findings underline the importance of incorporating investor sentiment and pandemic-related data into stock market predictions, thus offering a more comprehensive and accurate approach to market forecasting and risk management.

Suggested Citation

  • Gao, Jie & Fan, Chunguo & Liu, Ting & Bai, Xiuran & Li, Wenyong & Tan, Huimin, 2025. "Embracing market dynamics in the post-COVID era: A data-driven analysis of investor sentiment and behavioral characteristics in stock index futures returns," Omega, Elsevier, vol. 131(C).
  • Handle: RePEc:eee:jomega:v:131:y:2025:i:c:s0305048324001580
    DOI: 10.1016/j.omega.2024.103193
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048324001580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2024.103193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Zhenyu & Ren, Haohan & Zhang, Bohui, 2020. "Googling Investor Sentiment around the World," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(2), pages 549-580, March.
    2. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    3. Lin, Yu & Lu, Qin & Tan, Bin & Yu, Yuanyuan, 2022. "Forecasting energy prices using a novel hybrid model with variational mode decomposition," Energy, Elsevier, vol. 246(C).
    4. Liya Chu & Xue-Zhong He & Kai Li & Jun Tu, 2022. "Investor Sentiment and Paradigm Shifts in Equity Return Forecasting," Management Science, INFORMS, vol. 68(6), pages 4301-4325, June.
    5. Gang Zhang & Hongchi Liu & Pingli Li & Meng Li & Qiang He & Hailiang Chao & Jiangbin Zhang & Jinwang Hou, 2020. "Load Prediction Based on Hybrid Model of VMD-mRMR-BPNN-LSSVM," Complexity, Hindawi, vol. 2020, pages 1-20, January.
    6. Patricia Dechow & Alastair Lawrence & Mei Luo & Ventsislav Stamenov, 2024. "Media Attention and Event-Based Grouping of Stocks: An Examination of Stocks Hyped by Media Outlets as Benefiting from the Olympics," Management Science, INFORMS, vol. 70(8), pages 5157-5186, August.
    7. Bai, Chunguang & Zhu, Qingyun & Sarkis, Joseph, 2024. "Do blockchain capabilities help overcome supply and operational risks: Insights from firm market returns during COVID-19," Omega, Elsevier, vol. 126(C).
    8. Fraiberger, Samuel P. & Lee, Do & Puy, Damien & Ranciere, Romain, 2021. "Media sentiment and international asset prices," Journal of International Economics, Elsevier, vol. 133(C).
    9. Chunpeng Yang & Huihui Wu, 2021. "Investor Sentiment with Information Shock in the Stock Market," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(2), pages 510-524, January.
    10. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," LSE Research Online Documents on Economics 100409, London School of Economics and Political Science, LSE Library.
    11. Liu, Yong-Jun & Yang, Guo-Sen & Zhang, Wei-Guo, 2024. "A novel regret-rejoice cross-efficiency approach for energy stock portfolio optimization," Omega, Elsevier, vol. 126(C).
    12. Zheng, Li & Sun, Yuying & Wang, Shouyang, 2024. "A novel interval-based hybrid framework for crude oil price forecasting and trading," Energy Economics, Elsevier, vol. 130(C).
    13. Li, Hui & Wu, Dongdong, 2024. "Online investor attention and firm restructuring performance: Insights from an event-based DEA-Tobit model," Omega, Elsevier, vol. 122(C).
    14. Ben R. Marshall & Nhut H. Nguyen & Nuttawat Visaltanachoti, 2017. "Time series momentum and moving average trading rules," Quantitative Finance, Taylor & Francis Journals, vol. 17(3), pages 405-421, March.
    15. Wang, Ju-Jie & Wang, Jian-Zhou & Zhang, Zhe-George & Guo, Shu-Po, 2012. "Stock index forecasting based on a hybrid model," Omega, Elsevier, vol. 40(6), pages 758-766.
    16. Zhou, Zhongbao & Gao, Meng & Xiao, Helu & Wang, Rui & Liu, Wenbin, 2021. "Big data and portfolio optimization: A novel approach integrating DEA with multiple data sources," Omega, Elsevier, vol. 104(C).
    17. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," Journal of Financial Economics, Elsevier, vol. 135(2), pages 293-319.
    18. Li, Yi & Shen, Dehua & Wang, Pengfei & Zhang, Wei, 2020. "Does intraday time-series momentum exist in Chinese stock index futures market?," Finance Research Letters, Elsevier, vol. 35(C).
    19. Schmeling, Maik, 2009. "Investor sentiment and stock returns: Some international evidence," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 394-408, June.
    20. Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
    21. Onur Olgun & I. Hakan Yetkiner, 2011. "Determination of Optimal Hedging Strategy for Index Futures: Evidence from Turkey," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(6), pages 68-79, November.
    22. Baker, Malcolm & Wurgler, Jeffrey & Yuan, Yu, 2012. "Global, local, and contagious investor sentiment," Journal of Financial Economics, Elsevier, vol. 104(2), pages 272-287.
    23. Wang, Hao & Ye, Jingzhen & Huang, Linxuan & Wang, Qiang & Zhang, Haohua, 2023. "A multivariable hybrid prediction model of offshore wind power based on multi-stage optimization and reconstruction prediction," Energy, Elsevier, vol. 262(PA).
    24. Niţoi, Mihai & Pochea, Maria Miruna, 2020. "Time-varying dependence in European equity markets: A contagion and investor sentiment driven analysis," Economic Modelling, Elsevier, vol. 86(C), pages 133-147.
    25. Saâdaoui, Foued & Ben Jabeur, Sami, 2023. "Analyzing the influence of geopolitical risks on European power prices using a multiresolution causal neural network," Energy Economics, Elsevier, vol. 124(C).
    26. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    27. Chen, Rongda & Wang, Shengnan & Jin, Chenglu & Yu, Jingjing & Zhang, Xinyu & Zhang, Shuonan, 2023. "Comovements between multidimensional investor sentiment and returns on internet financial products," International Review of Financial Analysis, Elsevier, vol. 85(C).
    28. Yu He & Linshan Qu & Ran Wei & Xuankai Zhao, 2022. "Media-based investor sentiment and stock returns: a textual analysis based on newspapers," Applied Economics, Taylor & Francis Journals, vol. 54(7), pages 774-792, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiah, Mardy & Hu, Xiaolu & Zhong, Angel, 2022. "Photo sentiment and stock returns around the world," Finance Research Letters, Elsevier, vol. 46(PB).
    2. Siganos, Antonios & Vagenas-Nanos, Evangelos & Verwijmeren, Patrick, 2014. "Facebook's daily sentiment and international stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 730-743.
    3. N. Banholzer & S. Heiden & D. Schneller, 2019. "Exploiting investor sentiment for portfolio optimization," Business Research, Springer;German Academic Association for Business Research, vol. 12(2), pages 671-702, December.
    4. Wang, Wenzhao & Duxbury, Darren, 2021. "Institutional investor sentiment and the mean-variance relationship: Global evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 415-441.
    5. Gric, Zuzana & Bajzík, Josef & Badura, Ondřej, 2023. "Does sentiment affect stock returns? A meta-analysis across survey-based measures," International Review of Financial Analysis, Elsevier, vol. 89(C).
    6. Di, Li & Shaiban, Mohammed Sharaf & Hasanov, Akram Shavkatovich, 2021. "The power of investor sentiment in explaining bank stock performance: Listed conventional vs. Islamic banks," Pacific-Basin Finance Journal, Elsevier, vol. 66(C).
    7. Kostopoulos, Dimitrios & Meyer, Steffen, 2018. "Disentangling investor sentiment: Mood and household attitudes towards the economy," Journal of Economic Behavior & Organization, Elsevier, vol. 155(C), pages 28-78.
    8. Bennett, Donyetta & Mekelburg, Erik & Williams, T.H., 2023. "BeFi meets DeFi: A behavioral finance approach to decentralized finance asset pricing," Research in International Business and Finance, Elsevier, vol. 65(C).
    9. Lin, Chu-Bin & Chou, Robin K. & Wang, George H.K., 2018. "Investor sentiment and price discovery: Evidence from the pricing dynamics between the futures and spot markets," Journal of Banking & Finance, Elsevier, vol. 90(C), pages 17-31.
    10. Yuan, Ying & Wang, Haiying & Jin, Xiu, 2022. "Pandemic-driven financial contagion and investor behavior: Evidence from the COVID-19," International Review of Financial Analysis, Elsevier, vol. 83(C).
    11. Huynh, Nhan & Phan, Hoa, 2023. "Emotions in the crypto market: Do photos really speak?," Finance Research Letters, Elsevier, vol. 55(PB).
    12. Aysan, Ahmet Faruk & Caporin, Massimiliano & Cepni, Oguzhan, 2024. "Not all words are equal: Sentiment and jumps in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    13. Mariem Talbi & Amel Ben Halima, 2019. "Global Contagion of Investor Sentiment during the US Subprime Crisis: The Case of the USA and the Region of Latin America," International Journal of Economics and Financial Issues, Econjournals, vol. 9(3), pages 163-174.
    14. Anand, Abhinav & Basu, Sankarshan & Pathak, Jalaj & Thampy, Ashok, 2021. "The impact of sentiment on emerging stock markets," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 161-177.
    15. Mbarki, Imen & Omri, Abdelwahed & Naeem, Muhammad Abubakr, 2022. "From sentiment to systemic risk: Information transmission in Asia-Pacific stock markets," Research in International Business and Finance, Elsevier, vol. 63(C).
    16. Ruan, Qingsong & Wang, Zilin & Zhou, Yaping & Lv, Dayong, 2020. "A new investor sentiment indicator (ISI) based on artificial intelligence: A powerful return predictor in China," Economic Modelling, Elsevier, vol. 88(C), pages 47-58.
    17. Seok, Sang Ik & Cho, Hoon & Ryu, Doojin, 2019. "Firm-specific investor sentiment and daily stock returns," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    18. Jin, Xuejun & Chen, Cheng & Yang, Xiaolan, 2024. "The effect of international media news on the global stock market," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 50-69.
    19. Wang, Wenzhao & Su, Chen & Duxbury, Darren, 2022. "The conditional impact of investor sentiment in global stock markets: A two-channel examination," Journal of Banking & Finance, Elsevier, vol. 138(C).
    20. Shi, Yong & Tang, Ye-ran & Long, Wen, 2019. "Sentiment contagion analysis of interacting investors: Evidence from China’s stock forum," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 246-259.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:131:y:2025:i:c:s0305048324001580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.