IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1905.02650.html
   My bibliography  Save this paper

A class of recursive optimal stopping problems with applications to stock trading

Author

Listed:
  • Katia Colaneri
  • Tiziano De Angelis

Abstract

In this paper we introduce and solve a class of optimal stopping problems of recursive type. In particular, the stopping payoff depends directly on the value function of the problem itself. In a multi-dimensional Markovian setting we show that the problem is well posed, in the sense that the value is indeed the unique solution to a fixed point problem in a suitable space of continuous functions, and an optimal stopping time exists. We then apply our class of problems to a model for stock trading in two different market venues and we determine the optimal stopping rule in that case.

Suggested Citation

  • Katia Colaneri & Tiziano De Angelis, 2019. "A class of recursive optimal stopping problems with applications to stock trading," Papers 1905.02650, arXiv.org, revised Jun 2021.
  • Handle: RePEc:arx:papers:1905.02650
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1905.02650
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    2. Bayraktar, Erhan & Egami, Masahiko, 2007. "The effects of implementation delay on decision-making under uncertainty," Stochastic Processes and their Applications, Elsevier, vol. 117(3), pages 333-358, March.
    3. René Carmona & Nizar Touzi, 2008. "Optimal Multiple Stopping And Valuation Of Swing Options," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 239-268, April.
    4. M. Alessandra Crisafi & Andrea Macrina, 2016. "Simultaneous Trading In ‘Lit’ And Dark Pools," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-33, December.
    5. Duffie, Darrel & Lions, Pierre-Louis, 1992. "PDE solutions of stochastic differential utility," Journal of Mathematical Economics, Elsevier, vol. 21(6), pages 577-606.
    6. Peter Kratz & Torsten Schöneborn, 2018. "Optimal Liquidation And Adverse Selection In Dark Pools," Mathematical Finance, Wiley Blackwell, vol. 28(1), pages 177-210, January.
    7. M. Alessandra Crisafi & Andrea Macrina, 2014. "Simultaneous Trading in 'Lit' and Dark Pools," Papers 1405.2023, arXiv.org, revised Jan 2016.
    8. Peter Kratz & Torsten Schöneborn, 2015. "Portfolio Liquidation In Dark Pools In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 496-544, July.
    9. Duffie, Darrell & Epstein, Larry G, 1992. "Stochastic Differential Utility," Econometrica, Econometric Society, vol. 60(2), pages 353-394, March.
    10. Duffie, Darrell & Epstein, Larry G, 1992. "Asset Pricing with Stochastic Differential Utility," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 411-436.
    11. Dayanik, Savas & Karatzas, Ioannis, 2003. "On the optimal stopping problem for one-dimensional diffusions," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 173-212, October.
    12. Tiziano De Angelis & Yerkin Kitapbayev, 2014. "On the optimal exercise boundaries of swing put options," Papers 1407.6860, arXiv.org, revised Jan 2017.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fahrenwaldt, Matthias Albrecht & Jensen, Ninna Reitzel & Steffensen, Mogens, 2020. "Nonrecursive separation of risk and time preferences," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 95-108.
    2. Dirk Becherer & Wilfried Kuissi-Kamdem & Olivier Menoukeu-Pamen, 2023. "Optimal consumption with labor income and borrowing constraints for recursive preferences," Working Papers hal-04017143, HAL.
    3. Dominika Czyz & Karolina Safarzynska, 2023. "Catastrophic Damages and the Optimal Carbon Tax Under Loss Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(2), pages 303-340, June.
    4. Aït-Sahalia, Yacine & Matthys, Felix, 2019. "Robust consumption and portfolio policies when asset prices can jump," Journal of Economic Theory, Elsevier, vol. 179(C), pages 1-56.
    5. Chabakauri, Georgy, 2010. "Asset pricing with heterogeneous investors and portfolio constraints," LSE Research Online Documents on Economics 43142, London School of Economics and Political Science, LSE Library.
    6. Li, Hanwu & Riedel, Frank & Yang, Shuzhen, 2024. "Optimal consumption for recursive preferences with local substitution — the case of certainty," Journal of Mathematical Economics, Elsevier, vol. 110(C).
    7. Frederick Ploeg, 2021. "Carbon pricing under uncertainty," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(5), pages 1122-1142, October.
    8. Shi, Huihong & Mu, Congming & Yang, Jinqiang & Huang, Wenli, 2021. "A Sino-US comparative analysis of the hi-tech entrepreneurial model," Economic Modelling, Elsevier, vol. 94(C), pages 953-966.
    9. Zixin Feng & Dejian Tian, 2021. "Optimal consumption and portfolio selection with Epstein-Zin utility under general constraints," Papers 2111.09032, arXiv.org, revised May 2023.
    10. Emmanuelle Augeraud-Véron & Giorgio Fabbri & Katheline Schubert, 2019. "The Value of Biodiversity as an Insurance Device," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(4), pages 1068-1081.
    11. Joshua Lanier & Bin Miao & John K.-H. Quah & Songfa Zhong, 2024. "Intertemporal Consumption with Risk: A Revealed Preference Analysis," The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1319-1333, September.
    12. Olivier Menoukeu Pamen, 2017. "Maximum Principles of Markov Regime-Switching Forward–Backward Stochastic Differential Equations with Jumps and Partial Information," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 373-410, November.
    13. Joshua Aurand & Yu-Jui Huang, 2019. "Epstein-Zin Utility Maximization on a Random Horizon," Papers 1903.08782, arXiv.org, revised May 2023.
    14. Junchi Ma & Mobolaji Ogunsolu & Jinniao Qiu & Ayşe Deniz Sezer, 2023. "Credit risk pricing in a consumption‐based equilibrium framework with incomplete accounting information," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 666-708, July.
    15. Dietmar Leisen & Eckhard Platen, 2017. "Investing for the Long Run," Papers 1705.03929, arXiv.org.
    16. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Prevention and mitigation of epidemics: Biodiversity conservation and confinement policies," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    17. Yu Chen & Thomas Cosimano & Alex Himonas & Peter Kelly, 2014. "An Analytic Approach for Stochastic Differential Utility for Endowment and Production Economies," Computational Economics, Springer;Society for Computational Economics, vol. 44(4), pages 397-443, December.
    18. Campbell, John Y. & Chacko, George & Rodriguez, Jorge & Viceira, Luis M., 2004. "Strategic asset allocation in a continuous-time VAR model," Journal of Economic Dynamics and Control, Elsevier, vol. 28(11), pages 2195-2214, October.
    19. van den Bremer, Ton & van der Ploeg, Frederick & Wills, Samuel, 2016. "The Elephant In The Ground: Managing Oil And Sovereign Wealth," European Economic Review, Elsevier, vol. 82(C), pages 113-131.
    20. Anderson, Evan W., 2005. "The dynamics of risk-sensitive allocations," Journal of Economic Theory, Elsevier, vol. 125(2), pages 93-150, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1905.02650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.