IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1407.6860.html
   My bibliography  Save this paper

On the optimal exercise boundaries of swing put options

Author

Listed:
  • Tiziano De Angelis
  • Yerkin Kitapbayev

Abstract

We use probabilistic methods to characterise time dependent optimal stopping boundaries in a problem of multiple optimal stopping on a finite time horizon. Motivated by financial applications we consider a payoff of immediate stopping of "put" type and the underlying dynamics follows a geometric Brownian motion. The optimal stopping region relative to each optimal stopping time is described in terms of two boundaries which are continuous, monotonic functions of time and uniquely solve a system of coupled integral equations of Volterra-type. Finally we provide a formula for the value function of the problem.

Suggested Citation

  • Tiziano De Angelis & Yerkin Kitapbayev, 2014. "On the optimal exercise boundaries of swing put options," Papers 1407.6860, arXiv.org, revised Jan 2017.
  • Handle: RePEc:arx:papers:1407.6860
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1407.6860
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Imene Ben Latifa & Joseph Frederic Bonnans & Mohamed Mnif, 2011. "Optimal multiple stopping problem and financial applications," Working Papers hal-00642919, HAL.
    2. Ben Hambly & Sam Howison & Tino Kluge, 2009. "Modelling spikes and pricing swing options in electricity markets," Quantitative Finance, Taylor & Francis Journals, vol. 9(8), pages 937-949.
    3. René Carmona & Nizar Touzi, 2008. "Optimal Multiple Stopping And Valuation Of Swing Options," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 239-268, April.
    4. Marie Bernhart & Huyên Pham & Peter Tankov & Xavier Warin, 2011. "Swing Options Valuation:a BSDE with Constrained Jumps Approach," Working Papers hal-00553356, HAL.
    5. Tim Leung & Ronnie Sircar, 2009. "Accounting For Risk Aversion, Vesting, Job Termination Risk And Multiple Exercises In Valuation Of Employee Stock Options," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 99-128, January.
    6. N. Meinshausen & B. M. Hambly, 2004. "Monte Carlo Methods For The Valuation Of Multiple‐Exercise Options," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 557-583, October.
    7. Christian Bender, 2011. "Dual pricing of multi-exercise options under volume constraints," Finance and Stochastics, Springer, vol. 15(1), pages 1-26, January.
    8. Christophe Barrera-Esteve & Florent Bergeret & Charles Dossal & Emmanuel Gobet & Asma Meziou & Rémi Munos & Damien Reboul-Salze, 2006. "Numerical Methods for the Pricing of Swing Options: A Stochastic Control Approach," Methodology and Computing in Applied Probability, Springer, vol. 8(4), pages 517-540, December.
    9. M. Wahab & Chi-Guhn Lee, 2011. "Pricing swing options with regime switching," Annals of Operations Research, Springer, vol. 185(1), pages 139-160, May.
    10. Olivier Bardou & Sandrine Bouthemy & Gilles Pages, 2009. "Optimal Quantization for the Pricing of Swing Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(2), pages 183-217.
    11. Goran Peskir, 2005. "On The American Option Problem," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 169-181, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katia Colaneri & Tiziano De Angelis, 2019. "A class of recursive optimal stopping problems with applications to stock trading," Papers 1905.02650, arXiv.org, revised Jun 2021.
    2. Cheng Cai & Tiziano De Angelis & Jan Palczewski, 2020. "Optimal hedging of a perpetual American put with a single trade," Papers 2003.06249, arXiv.org, revised Sep 2020.
    3. Thomas Kruse & Philipp Strack, 2019. "An Inverse Optimal Stopping Problem for Diffusion Processes," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 423-439, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiziano De Angelis & Yerkin Kitapbayev, 2018. "On the Optimal Exercise Boundaries of Swing Put Options," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 252-274, February.
    2. J. Lars Kirkby & Shi-Jie Deng, 2019. "Swing Option Pricing By Dynamic Programming With B-Spline Density Projection," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-53, December.
    3. Christian Bender & Nikolai Dokuchaev, 2013. "A First-Order BSPDE for Swing Option Pricing," Papers 1305.3988, arXiv.org.
    4. Dahlgren, Eric & Leung, Tim, 2015. "An optimal multiple stopping approach to infrastructure investment decisions," Journal of Economic Dynamics and Control, Elsevier, vol. 53(C), pages 251-267.
    5. Nicolas Essis-Breton & Patrice Gaillardetz, 2020. "Fast Lower and Upper Estimates for the Price of Constrained Multiple Exercise American Options by Single Pass Lookahead Search and Nearest-Neighbor Martingale," Papers 2002.11258, arXiv.org.
    6. Tim Leung & Kazutoshi Yamazaki & Hongzhong Zhang, 2015. "Optimal Multiple Stopping with Negative Discount Rate and Random Refraction Times under Levy Models," Papers 1505.07313, arXiv.org.
    7. Hendrik Kohrs & Hermann Mühlichen & Benjamin R. Auer & Frank Schuhmacher, 2019. "Pricing and risk of swing contracts in natural gas markets," Review of Derivatives Research, Springer, vol. 22(1), pages 77-167, April.
    8. Tim Leung & Kazutoshi Yamazaki & Hongzhong Zhang, 2015. "An Analytic Recursive Method For Optimal Multiple Stopping: Canadization And Phase-Type Fitting," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1-31.
    9. Roberto Daluiso & Emanuele Nastasi & Andrea Pallavicini & Giulio Sartorelli, 2020. "Pricing commodity swing options," Papers 2001.08906, arXiv.org.
    10. Dong, Wenfeng & Kang, Boda, 2019. "Analysis of a multiple year gas sales agreement with make-up, carry-forward and indexation," Energy Economics, Elsevier, vol. 79(C), pages 76-96.
    11. Soren Christensen & Albrecht Irle & Stephan Jurgens, 2012. "Optimal multiple stopping with random waiting times," Papers 1205.1966, arXiv.org.
    12. John Ery & Loris Michel, 2021. "Solving optimal stopping problems with Deep Q-Learning," Papers 2101.09682, arXiv.org, revised Jun 2024.
    13. Juri Hinz & Jeremy Yee, 2017. "An Algorithmic Approach to Optimal Asset Liquidation Problems," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(2), pages 109-129, June.
    14. Aleksandrov, Nikolay & Espinoza, Raphael & Gyurkó, Lajos, 2013. "Optimal oil production and the world supply of oil," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1248-1263.
    15. Carl Chiarella & Les Clewlow & Boda Kang, 2016. "The Evaluation Of Multiple Year Gas Sales Agreement With Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-25, February.
    16. M. Basei & A. Cesaroni & T. Vargiolu, 2013. "Optimal exercise of swing contracts in energy markets: an integral constrained stochastic optimal control problem," Papers 1307.1320, arXiv.org.
    17. René Carmona & Savas Dayanik, 2008. "Optimal Multiple Stopping of Linear Diffusions," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 446-460, May.
    18. John Schoenmakers, 2012. "A pure martingale dual for multiple stopping," Finance and Stochastics, Springer, vol. 16(2), pages 319-334, April.
    19. N. Aleksandrov & B. Hambly, 2010. "A dual approach to multiple exercise option problems under constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(3), pages 503-533, June.
    20. R. Mark Reesor & T. James Marshall, 2020. "Forest of Stochastic Trees: A Method for Valuing Multiple Exercise Options," JRFM, MDPI, vol. 13(5), pages 1-31, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1407.6860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.