IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1904.05921.html
   My bibliography  Save this paper

Deep-learning based numerical BSDE method for barrier options

Author

Listed:
  • Bing Yu
  • Xiaojing Xing
  • Agus Sudjianto

Abstract

As is known, an option price is a solution to a certain partial differential equation (PDE) with terminal conditions (payoff functions). There is a close association between the solution of PDE and the solution of a backward stochastic differential equation (BSDE). We can either solve the PDE to obtain option prices or solve its associated BSDE. Recently a deep learning technique has been applied to solve option prices using the BSDE approach. In this approach, deep learning is used to learn some deterministic functions, which are used in solving the BSDE with terminal conditions. In this paper, we extend the deep-learning technique to solve a PDE with both terminal and boundary conditions. In particular, we will employ the technique to solve barrier options using Brownian motion bridges.

Suggested Citation

  • Bing Yu & Xiaojing Xing & Agus Sudjianto, 2019. "Deep-learning based numerical BSDE method for barrier options," Papers 1904.05921, arXiv.org.
  • Handle: RePEc:arx:papers:1904.05921
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1904.05921
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haojie Wang & Han Chen & Agus Sudjianto & Richard Liu & Qi Shen, 2018. "Deep Learning-Based BSDE Solver for Libor Market Model with Application to Bermudan Swaption Pricing and Hedging," Papers 1807.06622, arXiv.org, revised Sep 2018.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiequn Han & Ruimeng Hu & Jihao Long, 2020. "Convergence of Deep Fictitious Play for Stochastic Differential Games," Papers 2008.05519, arXiv.org, revised Mar 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Liang & Zhe Xu & Peter Li, 2019. "Deep Learning-Based Least Square Forward-Backward Stochastic Differential Equation Solver for High-Dimensional Derivative Pricing," Papers 1907.10578, arXiv.org, revised Oct 2020.
    2. Rohini Kumar & Frederick Forrest Miller & Hussein Nasralah & Stephan Sturm, 2024. "Risk-indifference Pricing of American-style Contingent Claims," Papers 2409.00095, arXiv.org.
    3. Erhan Bayraktar & Qi Feng & Zhaoyu Zhang, 2022. "Deep Signature Algorithm for Multi-dimensional Path-Dependent Options," Papers 2211.11691, arXiv.org, revised Jan 2024.
    4. Lorenc Kapllani & Long Teng, 2024. "A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations," Papers 2404.08456, arXiv.org.
    5. Jori Hoencamp & Shashi Jain & Drona Kandhai, 2023. "A Semi-Static Replication Method for Bermudan Swaptions under an Affine Multi-Factor Model," Risks, MDPI, vol. 11(10), pages 1-41, September.
    6. Jiawei Huo, 2023. "Finite Difference Solution Ansatz approach in Least-Squares Monte Carlo," Papers 2305.09166, arXiv.org, revised Aug 2024.
    7. Yajie Yu & Narayan Ganesan & Bernhard Hientzsch, 2023. "Backward Deep BSDE Methods and Applications to Nonlinear Problems," Risks, MDPI, vol. 11(3), pages 1-16, March.
    8. Jiefei Yang & Guanglian Li, 2024. "A deep primal-dual BSDE method for optimal stopping problems," Papers 2409.06937, arXiv.org.
    9. Jiefei Yang & Guanglian Li, 2024. "Gradient-enhanced sparse Hermite polynomial expansions for pricing and hedging high-dimensional American options," Papers 2405.02570, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1904.05921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.