IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1812.01103.html
   My bibliography  Save this paper

Predicting future stock market structure by combining social and financial network information

Author

Listed:
  • Th'arsis T. P. Souza
  • Tomaso Aste

Abstract

We demonstrate that future market correlation structure can be predicted with high out-of-sample accuracy using a multiplex network approach that combines information from social media and financial data. Market structure is measured by quantifying the co-movement of asset prices returns, while social structure is measured as the co-movement of social media opinion on those same assets. Predictions are obtained with a simple model that uses link persistence and link formation by triadic closure across both financial and social media layers. Results demonstrate that the proposed model can predict future market structure with up to a 40\% out-of-sample performance improvement compared to a benchmark model that assumes a time-invariant financial correlation structure. Social media information leads to improved models for all settings tested, particularly in the long-term prediction of financial market structure. Surprisingly, financial market structure exhibited higher predictability than social opinion structure.

Suggested Citation

  • Th'arsis T. P. Souza & Tomaso Aste, 2018. "Predicting future stock market structure by combining social and financial network information," Papers 1812.01103, arXiv.org.
  • Handle: RePEc:arx:papers:1812.01103
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1812.01103
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    2. De Bondt, Werner F M & Thaler, Richard, 1985. "Does the Stock Market Overreact?," Journal of Finance, American Finance Association, vol. 40(3), pages 793-805, July.
    3. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    4. J.-P. Onnela & K. Kaski & J. Kertész, 2004. "Clustering and information in correlation based financial networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 353-362, March.
    5. Chester Curme & H. Eugene Stanley & Irena Vodenska, 2015. "Coupled Network Approach To Predictability Of Financial Market Returns And News Sentiments," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(07), pages 1-26, November.
    6. Michele Tumminello & Salvatore Miccichè & Fabrizio Lillo & Jyrki Piilo & Rosario N Mantegna, 2011. "Statistically Validated Networks in Bipartite Complex Systems," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-11, March.
    7. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    8. Shleifer, Andrei, 2000. "Inefficient Markets: An Introduction to Behavioral Finance," OUP Catalogue, Oxford University Press, number 9780198292272.
    9. Morales, Raffaello & Di Matteo, T. & Gramatica, Ruggero & Aste, Tomaso, 2012. "Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3180-3189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduard Baitinger, 2021. "Forecasting asset returns with network‐based metrics: A statistical and economic analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1342-1375, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Souza, Thársis T.P. & Aste, Tomaso, 2019. "Predicting future stock market structure by combining social and financial network information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Douglas Castilho & Tharsis T. P. Souza & Soong Moon Kang & Jo~ao Gama & Andr'e C. P. L. F. de Carvalho, 2021. "Forecasting Financial Market Structure from Network Features using Machine Learning," Papers 2110.11751, arXiv.org.
    3. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    4. Huang, Wei-Qiang & Yao, Shuang & Zhuang, Xin-Tian & Yuan, Ying, 2017. "Dynamic asset trees in the US stock market: Structure variation and market phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 44-53.
    5. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    6. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    7. Puccio, Elena & Pajala, Antti & Piilo, Jyrki & Tumminello, Michele, 2016. "Structure and evolution of a European Parliament via a network and correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 167-185.
    8. Nicoló Musmeci & Tomaso Aste & T Di Matteo, 2015. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    9. Vishwas Kukreti & Hirdesh K. Pharasi & Priya Gupta & Sunil Kumar, 2020. "A perspective on correlation-based financial networks and entropy measures," Papers 2004.09448, arXiv.org.
    10. Ahelegbey, Daniel Felix & Cerchiello, Paola & Scaramozzino, Roberta, 2022. "Network based evidence of the financial impact of Covid-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 81(C).
    11. Zhang, Xin & Podobnik, Boris & Kenett, Dror Y. & Eugene Stanley, H., 2014. "Systemic risk and causality dynamics of the world international shipping market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 43-53.
    12. Musmeci, Nicoló & Aste, Tomaso & Di Matteo, T., 2015. "Relation between financial market structure and the real economy: comparison between clustering methods," LSE Research Online Documents on Economics 61644, London School of Economics and Political Science, LSE Library.
    13. Jovanovic, Franck & Mantegna, Rosario N. & Schinckus, Christophe, 2019. "When financial economics influences physics: The role of Econophysics," International Review of Financial Analysis, Elsevier, vol. 65(C).
    14. Nicol'o Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Risk diversification: a study of persistence with a filtered correlation-network approach," Papers 1410.5621, arXiv.org.
    15. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    16. Coletti, Paolo, 2016. "Comparing minimum spanning trees of the Italian stock market using returns and volumes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 246-261.
    17. Chester Curme & Michele Tumminello & Rosario N. Mantegna & H. Eugene Stanley & Dror Y. Kenett, 2015. "Emergence of statistically validated financial intraday lead-lag relationships," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1375-1386, August.
    18. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
    19. Nicolo Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," Papers 1406.0496, arXiv.org, revised Jan 2015.
    20. Pang, Raymond Ka-Kay & Granados, Oscar M. & Chhajer, Harsh & Legara, Erika Fille T., 2021. "An analysis of network filtering methods to sovereign bond yields during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1812.01103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.