IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v462y2016icp167-185.html
   My bibliography  Save this article

Structure and evolution of a European Parliament via a network and correlation analysis

Author

Listed:
  • Puccio, Elena
  • Pajala, Antti
  • Piilo, Jyrki
  • Tumminello, Michele

Abstract

We present a study of the network of relationships among elected members of the Finnish parliament, based on a quantitative analysis of initiative co-signatures, and its evolution over 16 years. To understand the structure of the parliament, we constructed a statistically validated network of members, based on the similarity between the patterns of initiatives they signed. We looked for communities within the network and characterized them in terms of members’ attributes, such as electoral district and party. To gain insight on the nested structure of communities, we constructed a hierarchical tree of members from the correlation matrix. Afterwards, we studied parliament dynamics yearly, with a focus on correlations within and between parties, by also distinguishing between government and opposition. Finally, we investigated the role played by specific individuals, at a local level. In particular, whether they act as proponents who gather consensus, or as signers. Our results provide a quantitative background to current theories in political science. From a methodological point of view, our network approach has proven able to highlight both local and global features of a complex social system.

Suggested Citation

  • Puccio, Elena & Pajala, Antti & Piilo, Jyrki & Tumminello, Michele, 2016. "Structure and evolution of a European Parliament via a network and correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 167-185.
  • Handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:167-185
    DOI: 10.1016/j.physa.2016.06.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116303302
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.06.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chester Curme & Michele Tumminello & Rosario N. Mantegna & H. Eugene Stanley & Dror Y. Kenett, 2015. "Emergence of statistically validated financial intraday lead-lag relationships," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1375-1386, August.
    2. Vasilis Hatzopoulos & Giulia Iori & Rosario N. Mantegna & Salvatore Miccich� & Michele Tumminello, 2015. "Quantifying preferential trading in the e-MID interbank market," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 693-710, April.
    3. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    4. Iori, Giulia & Mantegna, Rosario N. & Marotta, Luca & Miccichè, Salvatore & Porter, James & Tumminello, Michele, 2015. "Networked relationships in the e-MID interbank market: A trading model with memory," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 98-116.
    5. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    6. Michele Tumminello & Christofer Edling & Fredrik Liljeros & Rosario N Mantegna & Jerzy Sarnecki, 2013. "The Phenomenology of Specialization of Criminal Suspects," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.
    7. Michele Tumminello & Salvatore Miccichè & Jan Varho & Jyrki Piilo & Rosario N Mantegna, 2013. "Quantitative Analysis of Gender Stereotypes and Information Aggregation in a National Election," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-10, March.
    8. Zhang, Yan & Friend, A.J. & Traud, Amanda L. & Porter, Mason A. & Fowler, James H. & Mucha, Peter J., 2008. "Community structure in Congressional cosponsorship networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1705-1712.
    9. Michele Tumminello & Salvatore Miccichè & Fabrizio Lillo & Jyrki Piilo & Rosario N Mantegna, 2011. "Statistically Validated Networks in Bipartite Complex Systems," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    2. Sebastiano Michele Zema, 2023. "Uncovering the network structure of non-centrally cleared derivative markets: evidence from large regulatory data," Empirical Economics, Springer, vol. 65(4), pages 1799-1822, October.
    3. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    4. Nicoló Musmeci & Tomaso Aste & T Di Matteo, 2015. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    5. Musmeci, Nicoló & Aste, Tomaso & Di Matteo, T., 2015. "Relation between financial market structure and the real economy: comparison between clustering methods," LSE Research Online Documents on Economics 61644, London School of Economics and Political Science, LSE Library.
    6. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    7. Jovanovic, Franck & Mantegna, Rosario N. & Schinckus, Christophe, 2019. "When financial economics influences physics: The role of Econophysics," International Review of Financial Analysis, Elsevier, vol. 65(C).
    8. Nicol'o Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Risk diversification: a study of persistence with a filtered correlation-network approach," Papers 1410.5621, arXiv.org.
    9. Basnarkov, Lasko & Stojkoski, Viktor & Utkovski, Zoran & Kocarev, Ljupco, 2020. "Lead–lag relationships in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    10. Souza, Thársis T.P. & Aste, Tomaso, 2019. "Predicting future stock market structure by combining social and financial network information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    11. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    12. Chester Curme & Michele Tumminello & Rosario N. Mantegna & H. Eugene Stanley & Dror Y. Kenett, 2015. "Emergence of statistically validated financial intraday lead-lag relationships," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1375-1386, August.
    13. Xue Guo & Hu Zhang & Tianhai Tian, 2018. "Development of stock correlation networks using mutual information and financial big data," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-16, April.
    14. Nicolo Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," Papers 1406.0496, arXiv.org, revised Jan 2015.
    15. Chester Curme & H. Eugene Stanley & Irena Vodenska, 2015. "Coupled Network Approach To Predictability Of Financial Market Returns And News Sentiments," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(07), pages 1-26, November.
    16. Chen, Yanhua & Li, Youwei & Pantelous, Athanasios A. & Stanley, H. Eugene, 2022. "Short-run disequilibrium adjustment and long-run equilibrium in the international stock markets: A network-based approach," International Review of Financial Analysis, Elsevier, vol. 79(C).
    17. Vamvakaris, Michail D. & Pantelous, Athanasios A. & Zuev, Konstantin M., 2018. "Time series analysis of S&P 500 index: A horizontal visibility graph approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 41-51.
    18. Basnarkov, Lasko & Stojkoski, Viktor & Utkovski, Zoran & Kocarev, Ljupco, 2019. "Correlation patterns in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1026-1037.
    19. Coronnello, Claudia & Tumminello, Michele & Miccichè, Salvatore, 2016. "Gene-based and semantic structure of the Gene Ontology as a complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 313-328.
    20. Dror Kenett & Shlomo Havlin, 2015. "Network science: a useful tool in economics and finance," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 14(2), pages 155-167, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:167-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.