Practical Deep Reinforcement Learning Approach for Stock Trading
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
- Bekiros, Stelios D., 2010. "Fuzzy adaptive decision-making for boundedly rational traders in speculative stock markets," European Journal of Operational Research, Elsevier, vol. 202(1), pages 285-293, April.
- Francesco Bertoluzzo & Marco Corazza, 2012. "Reinforcement Learning for automatic financial trading: Introduction and some applications," Working Papers 2012:33, Department of Economics, University of Venice "Ca' Foscari", revised 2012.
- Yong Zhang & Xingyu Yang, 2017. "Online Portfolio Selection Strategy Based on Combining Experts’ Advice," Computational Economics, Springer;Society for Computational Economics, vol. 50(1), pages 141-159, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Uta Pigorsch & Sebastian Schafer, 2021. "High-Dimensional Stock Portfolio Trading with Deep Reinforcement Learning," Papers 2112.04755, arXiv.org.
- Tidor-Vlad Pricope, 2021. "Deep Reinforcement Learning in Quantitative Algorithmic Trading: A Review," Papers 2106.00123, arXiv.org.
- Supriya Bajpai, 2021. "Application of deep reinforcement learning for Indian stock trading automation," Papers 2106.16088, arXiv.org.
- Zechu Li & Xiao-Yang Liu & Jiahao Zheng & Zhaoran Wang & Anwar Walid & Jian Guo, 2021. "FinRL-Podracer: High Performance and Scalable Deep Reinforcement Learning for Quantitative Finance," Papers 2111.05188, arXiv.org.
- Huifang Huang & Ting Gao & Yi Gui & Jin Guo & Peng Zhang, 2022. "Stock Trading Optimization through Model-based Reinforcement Learning with Resistance Support Relative Strength," Papers 2205.15056, arXiv.org.
- Li-Chen Cheng & Yu-Hsiang Huang & Ming-Hua Hsieh & Mu-En Wu, 2021. "A Novel Trading Strategy Framework Based on Reinforcement Deep Learning for Financial Market Predictions," Mathematics, MDPI, vol. 9(23), pages 1-16, November.
- Zihao Zhang & Stefan Zohren & Stephen Roberts, 2019. "Deep Reinforcement Learning for Trading," Papers 1911.10107, arXiv.org.
- Ali Hirsa & Joerg Osterrieder & Branka Hadji-Misheva & Jan-Alexander Posth, 2021. "Deep reinforcement learning on a multi-asset environment for trading," Papers 2106.08437, arXiv.org.
- Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
- Xinyi Li & Yinchuan Li & Xiao-Yang Liu & Christina Dan Wang, 2019. "Risk Management via Anomaly Circumvent: Mnemonic Deep Learning for Midterm Stock Prediction," Papers 1908.01112, arXiv.org.
- Xinyi Li & Yinchuan Li & Yuancheng Zhan & Xiao-Yang Liu, 2019. "Optimistic Bull or Pessimistic Bear: Adaptive Deep Reinforcement Learning for Stock Portfolio Allocation," Papers 1907.01503, arXiv.org.
- Karush Suri & Xiao Qi Shi & Konstantinos Plataniotis & Yuri Lawryshyn, 2021. "TradeR: Practical Deep Hierarchical Reinforcement Learning for Trade Execution," Papers 2104.00620, arXiv.org.
- Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
- Ayman Chaouki & Stephen Hardiman & Christian Schmidt & Emmanuel S'eri'e & Joachim de Lataillade, 2020. "Deep Deterministic Portfolio Optimization," Papers 2003.06497, arXiv.org, revised Apr 2020.
- Xiao-Yang Liu & Hongyang Yang & Jiechao Gao & Christina Dan Wang, 2021. "FinRL: Deep Reinforcement Learning Framework to Automate Trading in Quantitative Finance," Papers 2111.09395, arXiv.org.
- Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
- Yizhuo Li & Peng Zhou & Fangyi Li & Xiao Yang, 2021. "An Improved Reinforcement Learning Model Based on Sentiment Analysis," Papers 2111.15354, arXiv.org.
- Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
- Xiao-Yang Liu & Hongyang Yang & Qian Chen & Runjia Zhang & Liuqing Yang & Bowen Xiao & Christina Dan Wang, 2020. "FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance," Papers 2011.09607, arXiv.org, revised Mar 2022.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiao-Yang Liu & Hongyang Yang & Jiechao Gao & Christina Dan Wang, 2021. "FinRL: Deep Reinforcement Learning Framework to Automate Trading in Quantitative Finance," Papers 2111.09395, arXiv.org.
- Xiao-Yang Liu & Hongyang Yang & Qian Chen & Runjia Zhang & Liuqing Yang & Bowen Xiao & Christina Dan Wang, 2020. "FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance," Papers 2011.09607, arXiv.org, revised Mar 2022.
- Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
- Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
- Pichler, Anton & Poledna, Sebastian & Thurner, Stefan, 2021.
"Systemic risk-efficient asset allocations: Minimization of systemic risk as a network optimization problem,"
Journal of Financial Stability, Elsevier, vol. 52(C).
- Pichler, Anton & Poledna, Sebastian & Thurner, Stefan, 2018. "Systemic-risk-efficient asset allocation: Minimization of systemic risk as a network optimization problem," INET Oxford Working Papers 2018-11, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
- Anton Pichler & Sebastian Poledna & Stefan Thurner, 2018. "Systemic-risk-efficient asset allocation: Minimization of systemic risk as a network optimization problem," Papers 1801.10515, arXiv.org, revised Mar 2018.
- Peter A. Abken & Milind M. Shrikhande, 1997. "The role of currency derivatives in internationally diversified portfolios," Economic Review, Federal Reserve Bank of Atlanta, vol. 82(Q 3), pages 34-59.
- Dhanya Jothimani & Ravi Shankar & Surendra S. Yadav, 2018. "A Big data analytical framework for portfolio optimization," Papers 1811.07188, arXiv.org, revised Nov 2018.
- Leonard J. Mirman & Egas M. Salgueiro & Marc Santugini, 2013. "Integrating Real and Financial Decisions of the Firm," Cahiers de recherche 1333, CIRPEE.
- Dominique Guégan & Wayne Tarrant, 2012.
"On the necessity of five risk measures,"
Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
- Dominique Guegan & Wayne Tarrant, 2010. "On the necessity of five risk measures," Documents de travail du Centre d'Economie de la Sorbonne 10005, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Dominique Guegan & Wayne Tarrant, 2012. "On the Necessity of Five Risk Measures," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00721339, HAL.
- Dominique Guegan & Wayne Tarrant, 2010. "On the necessity of five risk measures," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00460901, HAL.
- Andriosopoulos, Kostas & Nomikos, Nikos, 2014. "Performance replication of the Spot Energy Index with optimal equity portfolio selection: Evidence from the UK, US and Brazilian markets," European Journal of Operational Research, Elsevier, vol. 234(2), pages 571-582.
- Raffestin, Louis, 2014. "Diversification and systemic risk," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 85-106.
- Sridhar, Shrihari & Naik, Prasad A. & Kelkar, Ajay, 2017. "Metrics unreliability and marketing overspending," International Journal of Research in Marketing, Elsevier, vol. 34(4), pages 761-779.
- Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
- Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
- repec:dau:papers:123456789/2256 is not listed on IDEAS
- Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
- Ke Zhou & Jiangjun Gao & Duan Li & Xiangyu Cui, 2017. "Dynamic mean–VaR portfolio selection in continuous time," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1631-1643, October.
- Sanchez-Romero, Miguel, 2006. "“Demand for Private Annuities and Social Security: Consequences to Individual Wealth”," Working Papers in Economic Theory 2006/07, Universidad Autónoma de Madrid (Spain), Department of Economic Analysis (Economic Theory and Economic History).
- Muhinyuza, Stanislas & Bodnar, Taras & Lindholm, Mathias, 2020. "A test on the location of the tangency portfolio on the set of feasible portfolios," Applied Mathematics and Computation, Elsevier, vol. 386(C).
- Hany Shawky & Ronald Forbes & Alan Frankle, 1983. "Liquidity Services and Capital Market Equilibrium: The Case for Money Market Mutual Funds," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 6(2), pages 141-152, June.
- Colin Atkinson & Emmeline Storey, 2010. "Building an Optimal Portfolio in Discrete Time in the Presence of Transaction Costs," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 323-357.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2019-01-07 (Big Data)
- NEP-CMP-2019-01-07 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1811.07522. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.