IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1908.01112.html
   My bibliography  Save this paper

Risk Management via Anomaly Circumvent: Mnemonic Deep Learning for Midterm Stock Prediction

Author

Listed:
  • Xinyi Li
  • Yinchuan Li
  • Xiao-Yang Liu
  • Christina Dan Wang

Abstract

Midterm stock price prediction is crucial for value investments in the stock market. However, most deep learning models are essentially short-term and applying them to midterm predictions encounters large cumulative errors because they cannot avoid anomalies. In this paper, we propose a novel deep neural network Mid-LSTM for midterm stock prediction, which incorporates the market trend as hidden states. First, based on the autoregressive moving average model (ARMA), a midterm ARMA is formulated by taking into consideration both hidden states and the capital asset pricing model. Then, a midterm LSTM-based deep neural network is designed, which consists of three components: LSTM, hidden Markov model and linear regression networks. The proposed Mid-LSTM can avoid anomalies to reduce large prediction errors, and has good explanatory effects on the factors affecting stock prices. Extensive experiments on S&P 500 stocks show that (i) the proposed Mid-LSTM achieves 2-4% improvement in prediction accuracy, and (ii) in portfolio allocation investment, we achieve up to 120.16% annual return and 2.99 average Sharpe ratio.

Suggested Citation

  • Xinyi Li & Yinchuan Li & Xiao-Yang Liu & Christina Dan Wang, 2019. "Risk Management via Anomaly Circumvent: Mnemonic Deep Learning for Midterm Stock Prediction," Papers 1908.01112, arXiv.org.
  • Handle: RePEc:arx:papers:1908.01112
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1908.01112
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    2. Xinyi Li & Yinchuan Li & Yuancheng Zhan & Xiao-Yang Liu, 2019. "Optimistic Bull or Pessimistic Bear: Adaptive Deep Reinforcement Learning for Stock Portfolio Allocation," Papers 1907.01503, arXiv.org.
    3. Beaver, Wh, 1968. "Information Content Of Annual Earnings Announcements," Journal of Accounting Research, Wiley Blackwell, vol. 6, pages 67-92.
    4. Xiao-Yang Liu & Zhuoran Xiong & Shan Zhong & Hongyang Yang & Anwar Walid, 2018. "Practical Deep Reinforcement Learning Approach for Stock Trading," Papers 1811.07522, arXiv.org, revised Jul 2022.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyi Li & Yinchuan Li & Yuancheng Zhan & Xiao-Yang Liu, 2019. "Optimistic Bull or Pessimistic Bear: Adaptive Deep Reinforcement Learning for Stock Portfolio Allocation," Papers 1907.01503, arXiv.org.
    2. Tai Vo-Van & Ha Che-Ngoc & Nghiep Le-Dai & Thao Nguyen-Trang, 2022. "A New Strategy for Short-Term Stock Investment Using Bayesian Approach," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 887-911, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    2. Mark J. Flannery & Aris A. Protopapadakis, 2002. "Macroeconomic Factors Do Influence Aggregate Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 15(3), pages 751-782.
    3. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    4. Huifang Huang & Ting Gao & Yi Gui & Jin Guo & Peng Zhang, 2022. "Stock Trading Optimization through Model-based Reinforcement Learning with Resistance Support Relative Strength," Papers 2205.15056, arXiv.org.
    5. Gilbert, Thomas & Hrdlicka, Christopher & Kamara, Avraham, 2018. "The structure of information release and the factor structure of returns," Journal of Financial Economics, Elsevier, vol. 127(3), pages 546-566.
    6. Zechu Li & Xiao-Yang Liu & Jiahao Zheng & Zhaoran Wang & Anwar Walid & Jian Guo, 2021. "FinRL-Podracer: High Performance and Scalable Deep Reinforcement Learning for Quantitative Finance," Papers 2111.05188, arXiv.org.
    7. Chi, Jianxin Daniel & Gupta, Manu & Johnson, Shane A., 2020. "Short-horizon incentives and stock price inflation," Journal of Corporate Finance, Elsevier, vol. 65(C).
    8. Xiao-Yang Liu & Hongyang Yang & Qian Chen & Runjia Zhang & Liuqing Yang & Bowen Xiao & Christina Dan Wang, 2020. "FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance," Papers 2011.09607, arXiv.org, revised Mar 2022.
    9. Bruno Feunou & Jean-Sébastien Fontaine & Abderrahim Taamouti & Roméo Tédongap, 2014. "Risk Premium, Variance Premium, and the Maturity Structure of Uncertainty," Review of Finance, European Finance Association, vol. 18(1), pages 219-269.
    10. Johannes A. Skjeltorp & Bernt Arne Ødegaard, 2009. "The information content of market liquidity: An empirical analysis of liquidity at the Oslo Stock Exchange?," Working Paper 2009/26, Norges Bank.
    11. Auffret, Philippe, 2001. "An alternative unifying measure of welfare gains from risk-sharing," Policy Research Working Paper Series 2676, The World Bank.
    12. Li, Yuming, 1998. "Expected stock returns, risk premiums and volatilities of economic factors1," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 69-97, June.
    13. Pastor, Lubos & Stambaugh, Robert F., 2003. "Liquidity Risk and Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
    14. Andros Gregoriou & Christos Ioannidis, 2007. "Generalized method of moments and present value tests of the consumption-capital asset pricing model under transactions costs: evidence from the UK stock market," Empirical Economics, Springer, vol. 32(1), pages 19-39, April.
    15. Robert J. Shiller, 2005. "The Life-Cycle Personal Accounts Proposal for Social Security: An Evaluation," Cowles Foundation Discussion Papers 1504, Cowles Foundation for Research in Economics, Yale University.
    16. Beaver, William H. & McNichols, Maureen F. & Wang, Zach Z., 2020. "Increased market response to earnings announcements in the 21st century: An Empirical Investigation," Journal of Accounting and Economics, Elsevier, vol. 69(1).
    17. Mayank Goel & Suresh Kumar K., 2006. "A Risk-Sensitive Portfolio Optimisation Problem with Stochastic Interest Rate," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 5(3), pages 263-282, December.
    18. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    19. Posch, Olaf, 2009. "Structural estimation of jump-diffusion processes in macroeconomics," Journal of Econometrics, Elsevier, vol. 153(2), pages 196-210, December.
    20. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1908.01112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.