IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1806.03624.html
   My bibliography  Save this paper

Optimal Control of Constrained Stochastic Linear-Quadratic Model with Applications

Author

Listed:
  • Weiping Wu
  • Jianjun Gao
  • Junguo Lu
  • Xun Li

Abstract

This paper studies a class of continuous-time scalar-state stochastic Linear-Quadratic (LQ) optimal control problem with the linear control constraints. Applying the state separation theorem induced from its special structure, we develop the explicit solution for this class of problem. The revealed optimal control policy is a piece-wise affine function of system state. This control policy can be computed efficiently by solving two Riccati equations off-line. Under some mild conditions, the stationary optimal control policy can be also derived for this class of problem with infinite horizon. This result can be used to solve the constrained dynamic mean-variance portfolio selection problem. Examples shed light on the solution procedure of implementing our method.

Suggested Citation

  • Weiping Wu & Jianjun Gao & Junguo Lu & Xun Li, 2018. "Optimal Control of Constrained Stochastic Linear-Quadratic Model with Applications," Papers 1806.03624, arXiv.org.
  • Handle: RePEc:arx:papers:1806.03624
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1806.03624
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiangyu Cui & Duan Li & Xun Li, 2017. "Mean-Variance Policy For Discrete-Time Cone-Constrained Markets: Time Consistency In Efficiency And The Minimum-Variance Signed Supermartingale Measure," Mathematical Finance, Wiley Blackwell, vol. 27(2), pages 471-504, April.
    2. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    3. Cui, Xiangyu & Gao, Jianjun & Li, Xun & Li, Duan, 2014. "Optimal multi-period mean–variance policy under no-shorting constraint," European Journal of Operational Research, Elsevier, vol. 234(2), pages 459-468.
    4. Weipin Wu & Jianjun Gao & Duan Li & Yun Shi, 2017. "Explicit Solution for Constrained Stochastic Linear-Quadratic Control with Multiplicative Noise," Papers 1709.05529, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangyu Cui & Jianjun Gao & Yun Shi, 2021. "Multi-period mean–variance portfolio optimization with management fees," Operational Research, Springer, vol. 21(2), pages 1333-1354, June.
    2. Strub, Moris S. & Li, Duan & Cui, Xiangyu & Gao, Jianjun, 2019. "Discrete-time mean-CVaR portfolio selection and time-consistency induced term structure of the CVaR," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    3. Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2014. "Time Consistent Behavior Portfolio Policy for Dynamic Mean-Variance Formulation," Papers 1408.6070, arXiv.org, revised Aug 2015.
    4. Xin Huang & Duan Li & Daniel Zhuoyu Long, 2020. "Scenario-decomposition Solution Framework for Nonseparable Stochastic Control Problems," Papers 2010.08985, arXiv.org.
    5. Xiangyu Cui & Duan Li & Xun Li, 2014. "Mean-Variance Policy for Discrete-time Cone Constrained Markets: The Consistency in Efficiency and Minimum-Variance Signed Supermartingale Measure," Papers 1403.0718, arXiv.org.
    6. Stefania Corsaro & Valentina De Simone & Zelda Marino & Salvatore Scognamiglio, 2022. "l 1 -Regularization in Portfolio Selection with Machine Learning," Mathematics, MDPI, vol. 10(4), pages 1-15, February.
    7. Pun, Chi Seng & Wong, Hoi Ying, 2019. "A linear programming model for selection of sparse high-dimensional multiperiod portfolios," European Journal of Operational Research, Elsevier, vol. 273(2), pages 754-771.
    8. Cong, F. & Oosterlee, C.W., 2016. "Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 23-38.
    9. Peter A. Forsyth & George Labahn, 2017. "$\epsilon$-Monotone Fourier Methods for Optimal Stochastic Control in Finance," Papers 1710.08450, arXiv.org, revised Apr 2018.
    10. Weiping Wu & Yu Lin & Jianjun Gao & Ke Zhou, 2023. "Mean-variance hybrid portfolio optimization with quantile-based risk measure," Papers 2303.15830, arXiv.org, revised Apr 2023.
    11. Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
    12. Zhou, Zhongbao & Xiao, Helu & Yin, Jialing & Zeng, Ximei & Lin, Ling, 2016. "Pre-commitment vs. time-consistent strategies for the generalized multi-period portfolio optimization with stochastic cash flows," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 187-202.
    13. Areski Cousin & J'er^ome Lelong & Tom Picard, 2023. "Mean-variance dynamic portfolio allocation with transaction costs: a Wiener chaos expansion approach," Papers 2305.16152, arXiv.org, revised Jun 2023.
    14. Xiangyu Cui & Xun Li & Yun Shi & Si Zhao, 2023. "Discrete-Time Mean-Variance Strategy Based on Reinforcement Learning," Papers 2312.15385, arXiv.org.
    15. Stefania Corsaro & Valentina De Simone & Zelda Marino, 2021. "Fused Lasso approach in portfolio selection," Annals of Operations Research, Springer, vol. 299(1), pages 47-59, April.
    16. Yang Shen & Bin Zou, 2022. "Cone-constrained Monotone Mean-Variance Portfolio Selection Under Diffusion Models," Papers 2205.15905, arXiv.org.
    17. Ling, Aifan & Sun, Jie & Wang, Meihua, 2020. "Robust multi-period portfolio selection based on downside risk with asymmetrically distributed uncertainty set," European Journal of Operational Research, Elsevier, vol. 285(1), pages 81-95.
    18. repec:hal:wpaper:hal-04086378 is not listed on IDEAS
    19. Xu, Liang & Gao, Chunyan & Kou, Gang & Liu, Qinjun, 2017. "Comonotonic approximation to periodic investment problems under stochastic drift," European Journal of Operational Research, Elsevier, vol. 262(1), pages 251-261.
    20. Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2017. "Time consistent behavioral portfolio policy for dynamic mean–variance formulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1647-1660, December.
    21. Xun Li & Zuo Quan Xu, 2015. "Continuous-Time Mean-Variance Portfolio Selection with Constraints on Wealth and Portfolio," Papers 1507.06850, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1806.03624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.