IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1804.01676.html
   My bibliography  Save this paper

Predictive modeling of stock indices closing from web search trends

Author

Listed:
  • Arjun R
  • Suprabha KR

Abstract

The study aims to explore the strength of causal relationship between stock price search interest and real stock market outcomes on worldwide equity market indices. Such a phenomenon could also be mediated by investor behavior and extent of news coverage. The stock-specific internet search trends data and corresponding index close values from different countries stock exchanges are collected and analyzed. Empirical findings show global stock price search interests correlates more with developing economies with fewer effects in south asian stock exchanges apart from strong influence in western countries. Finally this study calls for development in expert decision support systems with the synthesis of using big data sources on forecasting market outcomes

Suggested Citation

  • Arjun R & Suprabha KR, 2018. "Predictive modeling of stock indices closing from web search trends," Papers 1804.01676, arXiv.org.
  • Handle: RePEc:arx:papers:1804.01676
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1804.01676
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Dimpfl & Stephan Jank, 2016. "Can Internet Search Queries Help to Predict Stock Market Volatility?," European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
    2. Marcelo S. Perlin & João F. Caldeira & André A. P. Santos & Martin Pontuschka, 2017. "Can We Predict the Financial Markets Based on Google's Search Queries?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(4), pages 454-467, July.
    3. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bleher, Johannes & Dimpfl, Thomas, 2019. "Today I got a million, tomorrow, I don't know: On the predictability of cryptocurrencies by means of Google search volume," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 147-159.
    2. Schaer, Oliver & Kourentzes, Nikolaos & Fildes, Robert, 2019. "Demand forecasting with user-generated online information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 197-212.
    3. Bleher, Johannes & Dimpfl, Thomas, 2022. "Knitting Multi-Annual High-Frequency Google Trends to Predict Inflation and Consumption," Econometrics and Statistics, Elsevier, vol. 24(C), pages 1-26.
    4. Jain, Anshul & Biswal, Pratap Chandra, 2019. "Does internet search interest for gold move the gold spot, stock and exchange rate markets? A study from India," Resources Policy, Elsevier, vol. 61(C), pages 501-507.
    5. Zhang, Tonghui & Yuan, Ying & Wu, Xi, 2020. "Is microblogging data reflected in stock market volatility? Evidence from Sina Weibo," Finance Research Letters, Elsevier, vol. 32(C).
    6. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
    7. Qadan, Mahmoud & Nama, Hazar, 2018. "Investor sentiment and the price of oil," Energy Economics, Elsevier, vol. 69(C), pages 42-58.
    8. Kerkemeier, Marco & Kruse-Becher, Robinson, 2022. "Join the club! Dynamics of global ESG indices convergence," Finance Research Letters, Elsevier, vol. 49(C).
    9. Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
    10. Matheus Pereira Libório & Petr Iakovlevitch Ekel & Carlos Augusto Paiva Martins, 2023. "Economic analysis through alternative data and big data techniques: what do they tell about Brazil?," SN Business & Economics, Springer, vol. 3(1), pages 1-16, January.
    11. Bai, Lijuan & Yan, Xiangbin & Yu, Guang, 2019. "Impact of CEO media appearance on corporate performance in social media," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    12. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    13. Campos, I. & Cortazar, G. & Reyes, T., 2017. "Modeling and predicting oil VIX: Internet search volume versus traditional mariables," Energy Economics, Elsevier, vol. 66(C), pages 194-204.
    14. Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
    15. Thomas Dimpfl & Tobias Langen, 2019. "How Unemployment Affects Bond Prices: A Mixed Frequency Google Nowcasting Approach," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 551-573, August.
    16. Bonaparte, Yosef & Bernile, Gennaro, 2023. "A new “Wall Street Darling?” effects of regulation sentiment in cryptocurrency markets," Finance Research Letters, Elsevier, vol. 52(C).
    17. Meshcheryakov, Artem & Winters, Drew B., 2022. "Retail investor attention and the limit order book: Intraday analysis of attention-based trading," International Review of Financial Analysis, Elsevier, vol. 81(C).
    18. Thomas Dimpfl & Vladislav Kleiman, 2019. "Investor Pessimism and the German Stock Market: Exploring Google Search Queries," German Economic Review, Verein für Socialpolitik, vol. 20(1), pages 1-28, February.
    19. Omid Zamani & Thomas Bittmann & Jens‐Peter Loy, 2024. "Does the internet bring food prices closer together? Exploring search engine query data in Iran," Journal of Agricultural Economics, Wiley Blackwell, vol. 75(2), pages 688-715, June.
    20. Imene Ben El Hadj Said & Skander Slim, 2022. "The Dynamic Relationship between Investor Attention and Stock Market Volatility: International Evidence," JRFM, MDPI, vol. 15(2), pages 1-25, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1804.01676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.