IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1803.07216.html
   My bibliography  Save this paper

Mixing LSMC and PDE Methods to Price Bermudan Options

Author

Listed:
  • David Farahany
  • Kenneth Jackson
  • Sebastian Jaimungal

Abstract

We develop a mixed least squares Monte Carlo-partial differential equation (LSMC-PDE) method for pricing Bermudan style options on assets whose volatility is stochastic. The algorithm is formulated for an arbitrary number of assets and volatility processes and we prove the algorithm converges almost surely for a class of models. We also discuss two methods to improve the algorithm's computational complexity. Our numerical examples focus on the single ($2d$) and multi-dimensional ($4d$) Heston models and we compare our hybrid algorithm with classical LSMC approaches. In each case, we find that the hybrid algorithm outperforms standard LSMC in terms of estimating prices and optimal exercise boundaries.

Suggested Citation

  • David Farahany & Kenneth Jackson & Sebastian Jaimungal, 2018. "Mixing LSMC and PDE Methods to Price Bermudan Options," Papers 1803.07216, arXiv.org, revised May 2020.
  • Handle: RePEc:arx:papers:1803.07216
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1803.07216
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Duy-Minh Dang & Kenneth R. Jackson & Scott Sues, 2017. "A dimension and variance reduction Monte-Carlo method for option pricing under jump-diffusion models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(3), pages 175-215, May.
    3. Duy-Minh Dang & Kenneth R. Jackson & Mohammadreza Mohammadi, 2015. "Dimension and variance reduction for Monte Carlo methods for high-dimensional models in finance," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(6), pages 522-552, December.
    4. Farid AitSahlia & Manisha Goswami & Suchandan Guha, 2010. "American option pricing under stochastic volatility: an empirical evaluation," Computational Management Science, Springer, vol. 7(2), pages 189-206, April.
    5. repec:dau:papers:123456789/4273 is not listed on IDEAS
    6. Farid AitSahlia & Manisha Goswami & Suchandan Guha, 2010. "American option pricing under stochastic volatility: an efficient numerical approach," Computational Management Science, Springer, vol. 7(2), pages 171-187, April.
    7. Philip Protter & Emmanuelle Clément & Damien Lamberton, 2002. "An analysis of a least squares regression method for American option pricing," Finance and Stochastics, Springer, vol. 6(4), pages 449-471.
    8. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    9. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, February.
    10. Tobias Lipp & Grégoire Loeper & Olivier Pironneau, 2013. "Mixing Monte-Carlo and Partial Differential Equations for Pricing Options," Post-Print hal-01558826, HAL.
    11. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaustav Das & Ivan Guo & Gr'egoire Loeper, 2021. "On Stochastic Partial Differential Equations and their applications to Derivative Pricing through a conditional Feynman-Kac formula," Papers 2106.14870, arXiv.org, revised Nov 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boda Kang & Christina Nikitopoulos Sklibosios & Erik Schlogl & Blessing Taruvinga, 2019. "The Impact of Jumps on American Option Pricing: The S&P 100 Options Case," Research Paper Series 397, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.
    3. Michael A. Kouritzin, 2016. "Explicit Heston Solutions and Stochastic Approximation for Path-dependent Option Pricing," Papers 1608.02028, arXiv.org, revised Apr 2018.
    4. Marta Biancardi & Giovanni Villani, 2017. "Robust Monte Carlo Method for R&D Real Options Valuation," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 481-498, March.
    5. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    6. Hainaut, Donatien & Akbaraly, Adnane, 2023. "Risk management with Local Least Squares Monte-Carlo," LIDAM Discussion Papers ISBA 2023003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & Jérôme Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Working Papers hal-03436046, HAL.
    8. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    9. Shuai Gao & Jun Zhao, 2016. "Pricing 50ETF in the Way of American Options Based on Least Squares Monte Carlo Simulation," Applied Finance and Accounting, Redfame publishing, vol. 2(2), pages 71-76, August.
    10. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    11. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    12. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    13. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    14. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    15. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    16. Garcia, Diego, 2003. "Convergence and Biases of Monte Carlo estimates of American option prices using a parametric exercise rule," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1855-1879, August.
    17. Ma, Jin & Zhang, Jianfeng, 2005. "Representations and regularities for solutions to BSDEs with reflections," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 539-569, April.
    18. Farid AitSahlia & Manisha Goswami & Suchandan Guha, 2010. "American option pricing under stochastic volatility: an efficient numerical approach," Computational Management Science, Springer, vol. 7(2), pages 171-187, April.
    19. Vijay V. Desai & Vivek F. Farias & Ciamac C. Moallemi, 2012. "Pathwise Optimization for Optimal Stopping Problems," Management Science, INFORMS, vol. 58(12), pages 2292-2308, December.
    20. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2008. "Simulation-based pricing of convertible bonds," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 310-331, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1803.07216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.