IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1802.00842.html
   My bibliography  Save this paper

Voting patterns in 2016: Exploration using multilevel regression and poststratification (MRP) on pre-election polls

Author

Listed:
  • Rob Trangucci
  • Imad Ali
  • Andrew Gelman
  • Doug Rivers

Abstract

We analyzed 2012 and 2016 YouGov pre-election polls in order to understand how different population groups voted in the 2012 and 2016 elections. We broke the data down by demographics and state. We display our findings with a series of graphs and maps. The R code associated with this project is available at https://github.com/rtrangucci/mrp_2016_election/.

Suggested Citation

  • Rob Trangucci & Imad Ali & Andrew Gelman & Doug Rivers, 2018. "Voting patterns in 2016: Exploration using multilevel regression and poststratification (MRP) on pre-election polls," Papers 1802.00842, arXiv.org, revised Mar 2018.
  • Handle: RePEc:arx:papers:1802.00842
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1802.00842
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yair Ghitza & Andrew Gelman, 2013. "Deep Interactions with MRP: Election Turnout and Voting Patterns Among Small Electoral Subgroups," American Journal of Political Science, John Wiley & Sons, vol. 57(3), pages 762-776, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hang Keun Ryu & Daniel J. Slottje, 2020. "Does Political Dominance Impact Economic Inequality?," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(1), pages 121-149, March.
    2. Hang Keun Ryu & Daniel J. Slottje, 2020. "Does Political Dominance Impact Economic Inequality?," International Association of Decision Sciences, Asia University, Taiwan, vol. 24(1), pages 121-149, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Rothschild, David & Goel, Sharad & Gelman, Andrew, 2015. "Forecasting elections with non-representative polls," International Journal of Forecasting, Elsevier, vol. 31(3), pages 980-991.
    2. Margaret Weden & Christine Peterson & Jeremy Miles & Regina Shih, 2015. "Evaluating Linearly Interpolated Intercensal Estimates of Demographic and Socioeconomic Characteristics of U.S. Counties and Census Tracts 2001–2009," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 34(4), pages 541-559, August.
    3. Yonatan Ben-Shalom & Ignacio Martinez & Mariel Finucane, "undated". "Risk of Workforce Exit Due to Disability: State Differences in 2003–2016," Mathematica Policy Research Reports 8aed03744a06419dbda68be8c, Mathematica Policy Research.
    4. Christopher Claassen & Richard Traunmüller, 2020. "Improving and Validating Survey Estimates of Religious Demography Using Bayesian Multilevel Models and Poststratification," Sociological Methods & Research, , vol. 49(3), pages 603-636, August.
    5. Laura C. Dawkins & Daniel B. Williamson & Stewart W. Barr & Sally R. Lampkin, 2020. "‘What drives commuter behaviour?': a Bayesian clustering approach for understanding opposing behaviours in social surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 251-280, January.
    6. Cerina, Roberto & Duch, Raymond, 2020. "Measuring public opinion via digital footprints," International Journal of Forecasting, Elsevier, vol. 36(3), pages 987-1002.
    7. Andrew Gelman & Bob Carpenter, 2020. "Bayesian analysis of tests with unknown specificity and sensitivity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1269-1283, November.
    8. Marina Christofoletti & Tânia R. B. Benedetti & Felipe G. Mendes & Humberto M. Carvalho, 2021. "Using Multilevel Regression and Poststratification to Estimate Physical Activity Levels from Health Surveys," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    9. Kevin Dayaratna & Jesse Crosson & Chandler Hubbard, 2022. "Closed Form Bayesian Inferences for Binary Logistic Regression with Applications to American Voter Turnout," Stats, MDPI, vol. 5(4), pages 1-21, November.
    10. Abbie Turiansky & Erin Lipman & Arif Mamun & Cullen Seaton & Jonathan Gellar & Sarah Hughes, "undated". "Financial Inclusion and Resilience to COVID-19 Economic Shocks: Evidence from Kenya, Nigeria, and Uganda," Mathematica Policy Research Reports a7cc410219f848528f77e294d, Mathematica Policy Research.
    11. Nicholas Beauchamp, 2017. "Predicting and Interpolating State‐Level Polls Using Twitter Textual Data," American Journal of Political Science, John Wiley & Sons, vol. 61(2), pages 490-503, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1802.00842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.