IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1801.09004.html
   My bibliography  Save this paper

On a capital allocation principle coherent with the Solvency 2 standard formula

Author

Listed:
  • Fabio Baione
  • Paolo De Angelis
  • Ivan Granito

Abstract

Solvency II Directive 2009/138/EC requires an insurance and reinsurance undertakings assessment of a Solvency Capital Requirement by means of the so-called "Standard Formula" or by means of partial or full internal models. Focusing on the first approach, the bottom-up aggregation formula proposed by the regulator permits a capital reduction due to diversification effect, according to the typical subadditivity property of risk measures. However, once the overall capital has been assessed no specific allocation formula is provided or required in order to evaluate the contribution of each risk source on the overall SCR. The aim of this paper is to provide a closed formula for capital allocation fully coherent with the Solvency II Capital Requirement assessed by means of Standard Formula. The solution proposed permits a top-down approach to assess the allocated SCR among the risks considered in the multilevel aggregation scheme established by Solvency II. Besides, we demonstrate that the allocation formula here proposed is consistent with the Euler's allocation principle

Suggested Citation

  • Fabio Baione & Paolo De Angelis & Ivan Granito, 2018. "On a capital allocation principle coherent with the Solvency 2 standard formula," Papers 1801.09004, arXiv.org.
  • Handle: RePEc:arx:papers:1801.09004
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1801.09004
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    2. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
    3. Buch, A. & Dorfleitner, G., 2008. "Coherent risk measures, coherent capital allocations and the gradient allocation principle," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 235-242, February.
    4. Filipović, Damir, 2009. "Multi-Level Risk Aggregation," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 565-575, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabio Baione & Paolo Angelis & Ivan Granito, 2021. "Capital allocation and RORAC optimization under solvency 2 standard formula," Annals of Operations Research, Springer, vol. 299(1), pages 747-763, April.
    2. Björn Häckel, 2010. "Risikoadjustierte Wertbeiträge zur ex ante Entscheidungsunterstützung: Ein axiomatischer Ansatz," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 21(1), pages 81-108, June.
    3. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    4. Csóka Péter & Pintér Miklós, 2016. "On the Impossibility of Fair Risk Allocation," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 16(1), pages 143-158, January.
    5. Csóka, Péter, 2017. "Fair risk allocation in illiquid markets," Finance Research Letters, Elsevier, vol. 21(C), pages 228-234.
    6. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    7. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    8. Songjiao Chen & William Wilson & Ryan Larsen & Bruce Dahl, 2016. "Risk Management for Grain Processors and “Copulas”," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(2), pages 365-382, June.
    9. Grechuk, Bogdan, 2023. "Extended gradient of convex function and capital allocation," European Journal of Operational Research, Elsevier, vol. 305(1), pages 429-437.
    10. Jaume Belles‐Sampera & Montserrat Guillén & Miguel Santolino, 2014. "Beyond Value‐at‐Risk: GlueVaR Distortion Risk Measures," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 121-134, January.
    11. Choo, Weihao & de Jong, Piet, 2016. "Insights to systematic risk and diversification across a joint probability distribution," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 142-150.
    12. Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
    13. Filipovic, Damir & Vogelpoth, Nicolas, 2008. "A note on the Swiss Solvency Test risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 897-902, June.
    14. Bellini, Fabio & Rosazza Gianin, Emanuela, 2008. "On Haezendonck risk measures," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 986-994, June.
    15. Gilles Boevi Koumou & Georges Dionne, 2022. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Risks, MDPI, vol. 10(11), pages 1-19, October.
    16. Targino, Rodrigo S. & Peters, Gareth W. & Shevchenko, Pavel V., 2015. "Sequential Monte Carlo Samplers for capital allocation under copula-dependent risk models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 206-226.
    17. Robert J. Elliott & Dilip B. Madan & Tak Kuen Siu, 2021. "Two price economic equilibria and financial market bid/ask prices," Annals of Finance, Springer, vol. 17(1), pages 27-43, March.
    18. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    19. Guusje Delsing & Michel Mandjes & Peter Spreij & Erik Winands, 2021. "On Capital Allocation for a Risk Measure Derived from Ruin Theory," Papers 2103.16264, arXiv.org.
    20. Songjiao Chen & William W. Wilson & Ryan Larsen & Bruce Dahl, 2015. "Investing in Agriculture as an Asset Class," Agribusiness, John Wiley & Sons, Ltd., vol. 31(3), pages 353-371, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1801.09004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.