IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1801.07358.html
   My bibliography  Save this paper

Capital allocation under the Fundamental Review of Trading Book

Author

Listed:
  • Luting Li
  • Hao Xing

Abstract

Facing the FRTB, banks need to allocate their capital to each business units or risk positions to evaluate the capital efficiency of their strategies. This paper proposes two computationally efficient allocation methods which are weighted according to liquidity horizon. Both methods provide more stable and less negative allocations under the FRTB than under the current regulatory framework.

Suggested Citation

  • Luting Li & Hao Xing, 2018. "Capital allocation under the Fundamental Review of Trading Book," Papers 1801.07358, arXiv.org, revised Jan 2019.
  • Handle: RePEc:arx:papers:1801.07358
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1801.07358
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yamai, Yasuhiro & Yoshiba, Toshinao, 2002. "Comparative Analyses of Expected Shortfall and Value-at-Risk: Their Estimation Error, Decomposition, and Optimization," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 20(1), pages 87-121, January.
    2. Dirk Tasche, 2007. "Capital Allocation to Business Units and Sub-Portfolios: the Euler Principle," Papers 0708.2542, arXiv.org, revised Jun 2008.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hengxin & Wang, Ruodu, 2023. "PELVE: Probability Equivalent Level of VaR and ES," Journal of Econometrics, Elsevier, vol. 234(1), pages 353-370.
    2. Ruodu Wang & Johanna F. Ziegel, 2021. "Scenario-based risk evaluation," Finance and Stochastics, Springer, vol. 25(4), pages 725-756, October.
    3. Christoph Frei, 2020. "A New Approach to Risk Attribution and Its Application in Credit Risk Analysis," Risks, MDPI, vol. 8(2), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takaaki Koike & Mihoko Minami, 2017. "Estimation of Risk Contributions with MCMC," Papers 1702.03098, arXiv.org, revised Jan 2019.
    2. Takaaki Koike & Marius Hofert, 2020. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Risks, MDPI, vol. 8(1), pages 1-33, January.
    3. Takaaki Koike & Marius Hofert, 2019. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Papers 1909.11794, arXiv.org, revised May 2020.
    4. Juan Carlos Escanciano & Zaichao Du, 2015. "Backtesting Expected Shortfall: Accounting for Tail Risk," CAEPR Working Papers 2015-001, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    5. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    6. Bennani, T. & Després, M. & Dujardin, M. & Duprey, T. & Kelber, A., 2014. "Macroprudential framework:key questions applied to the French case," Occasional papers 9, Banque de France.
    7. Peña, Juan Ignacio & Rodríguez, Rosa & Mayoral, Silvia, 2020. "Tail risk of electricity futures," Energy Economics, Elsevier, vol. 91(C).
    8. Fermanian, Jean-David & Scaillet, Olivier, 2005. "Sensitivity analysis of VaR and Expected Shortfall for portfolios under netting agreements," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 927-958, April.
    9. Jose Fernandes & Augusto Hasman & Juan Ignacio Pena, 2007. "Risk premium: insights over the threshold," Applied Financial Economics, Taylor & Francis Journals, vol. 18(1), pages 41-59.
    10. Silvia Stanescu & Radu Tunaru, 2013. "Quantifying the uncertainty in VaR and expected shortfall estimates," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 15, pages 357-372, Edward Elgar Publishing.
    11. John Cotter & Kevin Dowd, 2010. "Estimating financial risk measures for futures positions: A nonparametric approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(7), pages 689-703, July.
    12. Gyöngyi Bugár & Anita Ratting, 2016. "Revision of the quantification of market risk in the Basel III regulatory framework," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 15(1), pages 33-50.
    13. Mikhail Voropaev, 2011. "KISS approach to credit portfolio modeling," Papers 1107.2164, arXiv.org.
    14. Osmundsen, Kjartan Kloster, 2018. "Using expected shortfall for credit risk regulation," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 57(C), pages 80-93.
    15. Aigner, Philipp & Schlütter, Sebastian, 2023. "Enhancing gradient capital allocation with orthogonal convexity scenarios," ICIR Working Paper Series 47/23, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).
    16. Danielsson, Jon & Zhou, Chen, 2015. "Why risk is so hard to measure," LSE Research Online Documents on Economics 62002, London School of Economics and Political Science, LSE Library.
    17. Albrecht, Peter, 2003. "Risk measures," Papers 03-01, Sonderforschungsbreich 504.
    18. Yamai, Yasuhiro & Yoshiba, Toshinao, 2005. "Value-at-risk versus expected shortfall: A practical perspective," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 997-1015, April.
    19. Joanna Górka, 2009. "Application of the Family of Sign RCA Models for Obtaining the Selected Risk Measures," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 9, pages 39-50.
    20. Csóka, Péter & Bátyi, Tamás László & Pintér, Miklós & Balog, Dóra, 2011. "Tőkeallokációs módszerek és tulajdonságaik a gyakorlatban [Methods of capital allocation and their characteristics in practice]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 619-632.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1801.07358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.