IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1712.03044.html
   My bibliography  Save this paper

Mixed Models as an Alternative to Farima

Author

Listed:
  • Jos'e Igor Morlanes

Abstract

We construct a new process using a fractional Brownian motion and a fractional Ornstein-Uhlenbeck process of the Second Kind as building blocks. We consider the increments of the new process in discrete time and, as a result, we obtain a more parsimonious process with similar autocovariance structure to that of a FARIMA. In practice, variance of the new increment process is a closed-form expression easier to compute than that of FARIMA.

Suggested Citation

  • Jos'e Igor Morlanes, 2017. "Mixed Models as an Alternative to Farima," Papers 1712.03044, arXiv.org.
  • Handle: RePEc:arx:papers:1712.03044
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1712.03044
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Wilmott,Paul & Howison,Sam & Dewynne,Jeff, 1995. "The Mathematics of Financial Derivatives," Cambridge Books, Cambridge University Press, number 9780521497893, January.
    3. Christian Bender & Tommi Sottinen & Esko Valkeila, 2010. "Fractional processes as models in stochastic finance," Papers 1004.3106, arXiv.org.
    4. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    5. Doornik, Jurgen A. & Ooms, Marius, 2003. "Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 333-348, March.
    6. Daniel O. Stram & William W. S. Wei, 1986. "Temporal Aggregation In The Arima Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(4), pages 279-292, July.
    7. Dieter Sondermann, 2006. "Introduction to Stochastic Calculus for Finance," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-34837-5, October.
    8. Christian Bender & Tommi Sottinen & Esko Valkeila, 2008. "Pricing by hedging and no-arbitrage beyond semimartingales," Finance and Stochastics, Springer, vol. 12(4), pages 441-468, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schied, Alexander, 2014. "Model-free CPPI," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 84-94.
    2. Guglielmo Maria Caporale & Luis A. Gil-Alana, 2020. "Modelling Loans to Non-Financial Corporations within the Eurozone: A Long-Memory Approach," CESifo Working Paper Series 8674, CESifo.
    3. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    4. Tommi Sottinen & Lauri Viitasaari, 2018. "Conditional-Mean Hedging Under Transaction Costs In Gaussian Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-15, March.
    5. Shapour Mohammadi & Ahmad Pouyanfar, 2011. "Behaviour of stock markets' memories," Applied Financial Economics, Taylor & Francis Journals, vol. 21(3), pages 183-194.
    6. M. Angeles Carnero & Siem Jan Koopman & Marius Ooms, 2003. "Periodic Heteroskedastic RegARFIMA Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 03-071/4, Tinbergen Institute.
    7. Henryk GURGUL & Tomasz WÓJTOWICZ, 2006. "Long Memory on the German Stock Exchange," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 56(09-10), pages 447-468, September.
    8. Bos, Charles S, 2004. "Time Series Modelling using TSMod 3.24," International Journal of Forecasting, Elsevier, vol. 20(3), pages 515-522.
    9. Henryk Gurgul & Tomasz Wójtowicz, 2006. "Long-run properties of trading volume and volatility of equities listed in DJIA index," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 16(3-4), pages 29-56.
    10. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.
    11. Poskitt, D.S. & Grose, Simone D. & Martin, Gael M., 2015. "Higher-order improvements of the sieve bootstrap for fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 188(1), pages 94-110.
    12. Hasanjan Sayit, 2013. "Absence of arbitrage in a general framework," Annals of Finance, Springer, vol. 9(4), pages 611-624, November.
    13. D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2012. "Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap," Monash Econometrics and Business Statistics Working Papers 8/12, Monash University, Department of Econometrics and Business Statistics.
    14. Valerie Mignon & Sandrine Lardic, 2004. "The exact maximum likelihood estimation of ARFIMA processes and model selection criteria: A Monte Carlo study," Economics Bulletin, AccessEcon, vol. 3(21), pages 1-16.
    15. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, January.
    16. Ko, Kyungduk & Lee, Jaechoul & Lund, Robert, 2008. "Confidence intervals for long memory regressions," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1894-1902, September.
    17. Andreas Noack Jensen & Morten Ørregaard Nielsen, 2014. "A Fast Fractional Difference Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 428-436, August.
    18. Neil Kellard & Denise Osborn & Jerry Coakley & Simone D. Grose & Gael M. Martin & Donald S. Poskitt, 2015. "Bias Correction of Persistence Measures in Fractionally Integrated Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 721-740, September.
    19. Martin, Gael M. & Nadarajah, K. & Poskitt, D.S., 2020. "Issues in the estimation of mis-specified models of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 215(2), pages 559-573.
    20. Alexander Schied, 2013. "Model-free CPPI," Papers 1305.5915, arXiv.org, revised Jan 2014.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1712.03044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.