IDEAS home Printed from https://ideas.repec.org/a/fau/fauart/v56y2006i9-10p447-468.html
   My bibliography  Save this article

Long Memory on the German Stock Exchange

Author

Listed:
  • Henryk GURGUL

    (Faculty of Management, University of Science and Technology, Krakow – corresponding author)

  • Tomasz WÓJTOWICZ

    (Faculty of Management, University of Science and Technology, Krakow)

Abstract

In this study, the contributors present the results of their investigations into the long-memory properties of trading volume and the volatility of stock returns (given by absolute returns and alternatively by square returns). Their database is daily stock data of German companies in the DAX segment of the German Stock Exchange. The purpose of these investigations is the calculation of memory parameters and to determine whether there exists the same degree of long memory for trading-volume and return-volatility data. Calculations are performed on daily results from January 1994 to November 2005 and in three sub-periods: January 1994 to December 1997, January 1998 to December 2001, and January 2002 to November 2005.

Suggested Citation

  • Henryk GURGUL & Tomasz WÓJTOWICZ, 2006. "Long Memory on the German Stock Exchange," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 56(09-10), pages 447-468, September.
  • Handle: RePEc:fau:fauart:v:56:y:2006:i:9-10:p:447-468
    as

    Download full text from publisher

    File URL: http://journal.fsv.cuni.cz/storage/1069_s_447_468.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    3. Giampiero Gallo & Barbara Pacini, 2000. "The effects of trading activity on market volatility," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 163-175.
    4. Lobato, Ignacio N., 1999. "A semiparametric two-step estimator in a multivariate long memory model," Journal of Econometrics, Elsevier, vol. 90(1), pages 129-153, May.
    5. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    6. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    7. Lobato, Ignacio N & Velasco, Carlos, 2000. "Long Memory in Stock-Market Trading Volume," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 410-427, October.
    8. Michael D. McKenzie & Robert W. Faff, 2003. "The Determinants of Conditional Autocorrelation in Stock Returns," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 26(2), pages 259-274, June.
    9. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    10. Katsumi Shimotsu & Peter C. B. Phillips, 2002. "Pooled Log Periodogram Regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(1), pages 57-93, January.
    11. M. F. Omran & E. McKenzie, 2000. "Heteroscedasticity in stock returns data revisited: volume versus GARCH effects," Applied Financial Economics, Taylor & Francis Journals, vol. 10(5), pages 553-560.
    12. Lamoureux, Christopher G & Lastrapes, William D, 1994. "Endogenous Trading Volume and Momentum in Stock-Return Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 253-260, April.
    13. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    14. Billy P. Helms & Fred R. Kaen & Robert E. Rosenman, 1984. "Memory in commodity futures contracts," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 4(4), pages 559-567, December.
    15. Doornik, Jurgen A. & Ooms, Marius, 2003. "Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 333-348, March.
    16. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," The Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
    17. Katsumi Shimotsu & Peter C.B. Phillips, 2000. "Local Whittle Estimation in Nonstationary and Unit Root Cases," Cowles Foundation Discussion Papers 1266, Cowles Foundation for Research in Economics, Yale University, revised Sep 2003.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henryk Gurgul & Lukaz Lach & Tomasz Wojtowicz, 2016. "Impact of US Macroeconomic News Announcements on Intraday Causalities on Selected European Stock Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(5), pages 405-425, October.
    2. Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023. "A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
    3. Hiremath, Gourishankar S & Bandi, Kamaiah, 2010. "Long Memory in Stock Market Volatility:Evidence from India," MPRA Paper 48519, University Library of Munich, Germany.
    4. Anju Bala & Kapil Gupta, 2020. "Examining The Long Memory In Stock Returns And Liquidity In India," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 9(3), pages 25-43.
    5. Richards, Daniel W. & Willows, Gizelle D., 2019. "Monday mornings: Individual investor trading on days of the week and times within a day," Journal of Behavioral and Experimental Finance, Elsevier, vol. 22(C), pages 105-115.
    6. Kuswanto, Heri, 2009. "A New Simple Test Against Spurious Long Memory Using Temporal Aggregation," Hannover Economic Papers (HEP) dp-425, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henryk Gurgul & Tomasz Wójtowicz, 2006. "Long-run properties of trading volume and volatility of equities listed in DJIA index," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 16(3-4), pages 29-56.
    2. Tomasz Wójtowicz & Henryk Gurgul, 2009. "Long memory of volatility measures in time series," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(1), pages 37-54.
    3. Carroll, Rachael & Kearney, Colm, 2015. "Testing the mixture of distributions hypothesis on target stocks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 39(C), pages 1-14.
    4. Henryk Gurgul & Roland Mestel & Tomasz Wojtowicz, 2007. "Distribution of volume on the American stock market," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 1, pages 143-163.
    5. Farag, Hisham & Cressy, Robert, 2011. "Do regulatory policies affect the flow of information in emerging markets?," Research in International Business and Finance, Elsevier, vol. 25(3), pages 238-254, September.
    6. Niklas Wagner & Terry Marsh, 2005. "Surprise volume and heteroskedasticity in equity market returns," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 153-168.
    7. Gerlach, Richard & Chen, Cathy W.S. & Lin, Doris S.Y. & Huang, Ming-Hsiang, 2006. "Asymmetric responses of international stock markets to trading volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 422-444.
    8. Kumar, Brajesh & Singh, Priyanka & Pandey, Ajay, 2009. "The Dynamic Relationship between Price and Trading Volume:Evidence from Indian Stock Market," IIMA Working Papers WP2009-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    9. Brajesh Kumar, 2010. "The Dynamic Relationship between Price and Trading Volume: Evidence from Indian Stock Market," Working Papers id:2379, eSocialSciences.
    10. Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.
    11. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    12. Cathy W.S. Chen & Mike K.P. So & Thomas C. Chiang, 2016. "Evidence of Stock Returns and Abnormal Trading Volume: A Threshold Quantile Regression Approach," The Japanese Economic Review, Japanese Economic Association, vol. 67(1), pages 96-124, March.
    13. Sarika Mahajan & Balwinder Singh, 2008. "An Empirical Analysis of Stock Price-Volume Relationship in Indian Stock Market," Vision, , vol. 12(3), pages 1-13, July.
    14. Sinha, Pankaj & Agnihotri, Shalini, 2014. "Investigating impact of volatility persistence, market asymmetry and information inflow on volatility of stock indices using bivariate GJR-GARCH," MPRA Paper 58303, University Library of Munich, Germany.
    15. Sam Howison & David Lamper, 2001. "Trading volume in models of financial derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(2), pages 119-135.
    16. Henryk Gurgul & Paweł Majdosz & Roland Mestel, 2007. "Price–volume relations of DAX companies," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 21(3), pages 353-379, September.
    17. repec:lan:wpaper:3326 is not listed on IDEAS
    18. repec:lan:wpaper:3050 is not listed on IDEAS
    19. repec:lan:wpaper:3048 is not listed on IDEAS
    20. Eric Girard & Mohammed Omran, 2009. "On the relationship between trading volume and stock price volatility in CASE," International Journal of Managerial Finance, Emerald Group Publishing Limited, vol. 5(1), pages 110-134, February.
    21. Marwan Izzeldin, 2007. "Trading volume and the number of trades," Working Papers 584864, Lancaster University Management School, Economics Department.
    22. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    23. Wu, Chunchi & Xu, Xiaoqing Eleanor, 2000. "Return Volatility, Trading Imbalance and the Information Content of Volume," Review of Quantitative Finance and Accounting, Springer, vol. 14(2), pages 131-153, March.

    More about this item

    Keywords

    DAX 30; trading volume; univariate and bivariate long memory;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G35 - Financial Economics - - Corporate Finance and Governance - - - Payout Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:fauart:v:56:y:2006:i:9-10:p:447-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Natalie Svarcova (email available below). General contact details of provider: https://edirc.repec.org/data/icunicz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.