IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1710.01852.html
   My bibliography  Save this paper

Finite Time Identification in Unstable Linear Systems

Author

Listed:
  • Mohamad Kazem Shirani Faradonbeh
  • Ambuj Tewari
  • George Michailidis

Abstract

Identification of the parameters of stable linear dynamical systems is a well-studied problem in the literature, both in the low and high-dimensional settings. However, there are hardly any results for the unstable case, especially regarding finite time bounds. For this setting, classical results on least-squares estimation of the dynamics parameters are not applicable and therefore new concepts and technical approaches need to be developed to address the issue. Unstable linear systems arise in key real applications in control theory, econometrics, and finance. This study establishes finite time bounds for the identification error of the least-squares estimates for a fairly large class of heavy-tailed noise distributions, and transition matrices of such systems. The results relate the time length (samples) required for estimation to a function of the problem dimension and key characteristics of the true underlying transition matrix and the noise distribution. To establish them, appropriate concentration inequalities for random matrices and for sequences of martingale differences are leveraged.

Suggested Citation

  • Mohamad Kazem Shirani Faradonbeh & Ambuj Tewari & George Michailidis, 2017. "Finite Time Identification in Unstable Linear Systems," Papers 1710.01852, arXiv.org, revised Jun 2018.
  • Handle: RePEc:arx:papers:1710.01852
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1710.01852
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nielsen, Bent, 2010. "Analysis Of Coexplosive Processes," Econometric Theory, Cambridge University Press, vol. 26(3), pages 882-915, June.
    2. Katarina Juselius & Zorica Mladenovic, 2002. "High Inflation, Hyperinflation and Explosive Roots: The Case of Yugoslavia," Discussion Papers 02-23, University of Copenhagen. Department of Economics.
    3. Nielsen, Bent, 2005. "Strong Consistency Results For Least Squares Estimators In General Vector Autoregressions With Deterministic Terms," Econometric Theory, Cambridge University Press, vol. 21(3), pages 534-561, June.
    4. Lai, T. L. & Wei, C. Z., 1983. "Asymptotic properties of general autoregressive models and strong consistency of least-squares estimates of their parameters," Journal of Multivariate Analysis, Elsevier, vol. 13(1), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Norbert Christopeit & Michael Massmann, 2018. "Strong consistency of the least squares estimator in regression models with adaptive learning," Tinbergen Institute Discussion Papers 18-045/III, Tinbergen Institute.
    2. Ye Chen & Jian Li & Qiyuan Li, 2023. "Seemingly Unrelated Regression Estimation for VAR Models with Explosive Roots," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(4), pages 910-937, August.
    3. Nielsen, Bent, 2008. "On the Explosive Nature of Hyper-Inflation Data," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 2, pages 1-29.
    4. Norbert Christopeit & Michael Massmann, 2017. "Strong consistency of the least squares estimator in regression models with adaptive learning," WHU Working Paper Series - Economics Group 17-07, WHU - Otto Beisheim School of Management.
    5. Engsted, Tom & Hviid, Simon J. & Pedersen, Thomas Q., 2016. "Explosive bubbles in house prices? Evidence from the OECD countries," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 40(C), pages 14-25.
    6. Listorti, Giulia & Esposti, Roberto, 2012. "Horizontal Price Transmission in Agricultural Markets: Fundamental Concepts and Open Empirical Issues," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(1), pages 1-28, April.
    7. Lars Hougaard Hansen & Bent Nielsen & Jens Perch Nielsen, 2004. "Two sided analysis of variance with a latent time series," Economics Papers 2004-W25, Economics Group, Nuffield College, University of Oxford.
    8. Pavlidis, Efthymios & Martínez-García, Enrique & Grossman, Valerie, 2019. "Detecting periods of exuberance: A look at the role of aggregation with an application to house prices," Economic Modelling, Elsevier, vol. 80(C), pages 87-102.
    9. Yoon, Gawon, 2005. "An introduction to I([infinity]) processes," Economic Modelling, Elsevier, vol. 22(3), pages 473-483, May.
    10. Xie, Zixiong & Chen, Shyh-Wei & Wu, An-Chi, 2019. "Asymmetric adjustment, non-linearity and housing price bubbles: New international evidence," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    11. Victor Konev & Bogdan Nazarenko, 2020. "Sequential fixed accuracy estimation for nonstationary autoregressive processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 235-264, February.
    12. Mohamed Boutahar, 2002. "General Autoregressive Models with Long-Memory Noise," Statistical Inference for Stochastic Processes, Springer, vol. 5(3), pages 321-333, October.
    13. João Lita da Silva, 2014. "Strong consistency of least squares estimates in multiple regression models with random regressors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(3), pages 361-375, April.
    14. Alessandro Casini & Pierre Perron, 2018. "Continuous Record Asymptotics for Change-Points Models," Papers 1803.10881, arXiv.org, revised Nov 2021.
    15. Nielsen, Bent & Sohkanen, Jouni S., 2011. "Asymptotic Behavior Of The Cusum Of Squares Test Under Stochastic And Deterministic Time Trends," Econometric Theory, Cambridge University Press, vol. 27(4), pages 913-927, August.
    16. Firmin Doko Tchatoka & Qazi Haque, 2023. "On bootstrapping tests of equal forecast accuracy for nested models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1844-1864, November.
    17. Ye ChenCapital & Peter C B Phillips & Shuping Shi, 2023. "Common Bubble Detection in Large Dimensional Financial Systems," Journal of Financial Econometrics, Oxford University Press, vol. 21(4), pages 989-1063.
    18. Peter C.B. Phillips & Werner Ploberger, 1992. "Time Series Modeling with a Bayesian Frame of Reference: Concepts, Illustrations and Asymptotics," Cowles Foundation Discussion Papers 1038, Cowles Foundation for Research in Economics, Yale University.
    19. B. Nielsen & N. Shephard, 2003. "Likelihood analysis of a first‐order autoregressive model with exponential innovations," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(3), pages 337-344, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1710.01852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.