IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v74y2022i4d10.1007_s10463-021-00812-4.html
   My bibliography  Save this article

Fixed accuracy estimation of parameters in a threshold autoregressive model

Author

Listed:
  • Victor V. Konev

    (Tomsk State University)

  • Sergey E. Vorobeychikov

    (Tomsk State University)

Abstract

For parameters in a threshold autoregressive process, the paper proposes a sequential modification of the least squares estimates with a specific stopping rule for collecting the data for each parameter. In the case of normal residuals, these estimates are exactly normally distributed in a wide range of unknown parameters. On the base of these estimates, a fixed-size confidence ellipsoid covering true values of parameters with prescribed probability is constructed. In the i.i.d. case with unspecified error distributions, the sequential estimates are asymptotically normally distributed uniformly in parameters belonging to any compact set in the ergodicity parametric region. Small-sample behavior of the estimates is studied via simulation data.

Suggested Citation

  • Victor V. Konev & Sergey E. Vorobeychikov, 2022. "Fixed accuracy estimation of parameters in a threshold autoregressive model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 685-711, August.
  • Handle: RePEc:spr:aistmt:v:74:y:2022:i:4:d:10.1007_s10463-021-00812-4
    DOI: 10.1007/s10463-021-00812-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-021-00812-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-021-00812-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Dong & Ling, Shiqing, 2012. "On the least squares estimation of multiple-regime threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 167(1), pages 240-253.
    2. Lai, T. L. & Wei, C. Z., 1983. "Asymptotic properties of general autoregressive models and strong consistency of least-squares estimates of their parameters," Journal of Multivariate Analysis, Elsevier, vol. 13(1), pages 1-23, March.
    3. Gao, Jiti & Tjøstheim, Dag & Yin, Jiying, 2013. "Estimation in threshold autoregressive models with a stationary and a unit root regime," Journal of Econometrics, Elsevier, vol. 172(1), pages 1-13.
    4. Chun Yip Yau & Chong Man Tang & Thomas C. M. Lee, 2015. "Estimation of Multiple-Regime Threshold Autoregressive Models With Structural Breaks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1175-1186, September.
    5. P. Chigansky & Yu. Kutoyants, 2013. "Estimation in threshold autoregressive models with correlated innovations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 959-992, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeffrey Frankel, 2023. "Estimation of Nonlinear Exchange Rate Dynamics in Evolving Regimes," CID Working Papers 429, Center for International Development at Harvard University.
    2. Yaxing Yang & Shiqing Ling, 2018. "A Note On The Lse Of Three-Regime Tar Model With An Infinite Variance," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-13, June.
    3. Yang, Yaxing & Ling, Shiqing, 2017. "Self-weighted LAD-based inference for heavy-tailed threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 197(2), pages 368-381.
    4. Chih‐Hao Chang & Kam‐Fai Wong & Wei‐Yee Lim, 2023. "Threshold estimation for continuous three‐phase polynomial regression models with constant mean in the middle regime," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(1), pages 4-47, February.
    5. Mohamed Boutahar, 2002. "General Autoregressive Models with Long-Memory Noise," Statistical Inference for Stochastic Processes, Springer, vol. 5(3), pages 321-333, October.
    6. Gao, Jiti & Kanaya, Shin & Li, Degui & Tjøstheim, Dag, 2015. "Uniform Consistency For Nonparametric Estimators In Null Recurrent Time Series," Econometric Theory, Cambridge University Press, vol. 31(5), pages 911-952, October.
    7. João Lita da Silva, 2014. "Strong consistency of least squares estimates in multiple regression models with random regressors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(3), pages 361-375, April.
    8. Kourtellos, Andros & Stengos, Thanasis & Sun, Yiguo, 2022. "Endogeneity In Semiparametric Threshold Regression," Econometric Theory, Cambridge University Press, vol. 38(3), pages 562-595, June.
    9. Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
    10. Biqing Cai & Dag Tjøstheim, 2015. "Nonparametric Regression Estimation for Multivariate Null Recurrent Processes," Econometrics, MDPI, vol. 3(2), pages 1-24, April.
    11. Miao, Ke & Su, Liangjun & Wang, Wendun, 2020. "Panel threshold regressions with latent group structures," Journal of Econometrics, Elsevier, vol. 214(2), pages 451-481.
    12. Bravo, Francesco & Li, Degui & Tjøstheim, Dag, 2021. "Robust nonlinear regression estimation in null recurrent time series," Journal of Econometrics, Elsevier, vol. 224(2), pages 416-438.
    13. Bercu, B., 2004. "On the convergence of moments in the almost sure central limit theorem for martingales with statistical applications," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 157-173, May.
    14. Lihua Feng & Gaoyuan Luo, 2014. "Application of a nonlinear model in landfall number forecasting for tropical cyclones in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1475-1482, September.
    15. Muhammad Jaffri Mohd Nasir & Ramzan Nazim Khan & Gopalan Nair & Darfiana Nur, 2024. "Active-set based block coordinate descent algorithm in group LASSO for self-exciting threshold autoregressive model," Statistical Papers, Springer, vol. 65(5), pages 2973-3006, July.
    16. repec:wyi:journl:002203 is not listed on IDEAS
    17. Francesco Giordano & Marcella Niglio & Cosimo Damiano Vitale, 2017. "Unit Root Testing in Presence of a Double Threshold Process," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 539-556, June.
    18. Cho, Haeran & Fryzlewicz, Piotr, 2024. "Multiple change point detection under serial dependence: wild contrast maximisation and gappy Schwarz algorithm," LSE Research Online Documents on Economics 120085, London School of Economics and Political Science, LSE Library.
    19. Jiti Gao & Maxwell King, 2012. "An Improved Nonparametric Unit-Root Test," Monash Econometrics and Business Statistics Working Papers 16/12, Monash University, Department of Econometrics and Business Statistics.
    20. Li, Dong & Ling, Shiqing & Zakoïan, Jean-Michel, 2015. "Asymptotic inference in multiple-threshold double autoregressive models," Journal of Econometrics, Elsevier, vol. 189(2), pages 415-427.
    21. repec:ebl:ecbull:v:3:y:2007:i:38:p:1-11 is not listed on IDEAS
    22. Firmin Doko Tchatoka & Qazi Haque, 2023. "On bootstrapping tests of equal forecast accuracy for nested models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1844-1864, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:74:y:2022:i:4:d:10.1007_s10463-021-00812-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.