IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1709.05837.html
   My bibliography  Save this paper

Optimal Liquidation Problems in a Randomly-Terminated Horizon

Author

Listed:
  • Qing-Qing Yang
  • Wai-Ki Ching
  • Jia-Wen Gu
  • Tak Kwong Wong

Abstract

In this paper, we study optimal liquidation problems in a randomly-terminated horizon. We consider the liquidation of a large single-asset portfolio with the aim of minimizing a combination of volatility risk and transaction costs arising from permanent and temporary market impact. Three different scenarios are analyzed under Almgren-Chriss's market impact model to explore the relation between optimal liquidation strategies and potential inventory risk arising from the uncertainty of the liquidation horizon. For cases where no closed-form solutions can be obtained, we verify comparison principles for viscosity solutions and characterize the value function as the unique viscosity solution of the associated Hamilton-Jacobi-Bellman (HJB) equation.

Suggested Citation

  • Qing-Qing Yang & Wai-Ki Ching & Jia-Wen Gu & Tak Kwong Wong, 2017. "Optimal Liquidation Problems in a Randomly-Terminated Horizon," Papers 1709.05837, arXiv.org.
  • Handle: RePEc:arx:papers:1709.05837
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1709.05837
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander Schied & Torsten Schöneborn, 2009. "Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets," Finance and Stochastics, Springer, vol. 13(2), pages 181-204, April.
    2. Hieber, Peter & Scherer, Matthias, 2012. "A note on first-passage times of continuously time-changed Brownian motion," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 165-172.
    3. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    4. Tse & Forsyth & Kennedy & Windcliff, 2013. "Comparison Between the Mean-Variance Optimal and the Mean-Quadratic-Variation Optimal Trading Strategies," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(5), pages 415-449, November.
    5. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    6. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    7. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    8. Rudloff, Birgit & Street, Alexandre & Valladão, Davi M., 2014. "Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences," European Journal of Operational Research, Elsevier, vol. 234(3), pages 743-750.
    9. Forsyth, P.A. & Kennedy, J.S. & Tse, S.T. & Windcliff, H., 2012. "Optimal trade execution: A mean quadratic variation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1971-1991.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    2. Tim Leung & Peng Liu, 2012. "Risk Premia And Optimal Liquidation Of Credit Derivatives," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-34.
    3. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Rafal M. Wojakowski & M. Shahid Ebrahim & Aziz Jaafar & Murizah Osman Salleh, 2019. "Can Loan Valuation Adjustment (LVA) approach immunize collateralized debt from defaults?," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 28(2), pages 141-158, May.
    5. Nan Chen & S. G. Kou, 2009. "Credit Spreads, Optimal Capital Structure, And Implied Volatility With Endogenous Default And Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 343-378, July.
    6. Ebrahim, M. Shahid & Jaafar, Aziz & Omar, Fatma A. & Salleh, Murizah Osman, 2016. "Can Islamic injunctions indemnify the structural flaws of securitized debt?," Journal of Corporate Finance, Elsevier, vol. 37(C), pages 271-286.
    7. Tim Leung & Yoshihiro Shirai, 2015. "Optimal derivative liquidation timing under path-dependent risk penalties," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-32.
    8. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, December.
    9. Danielsson, Jon & Zigrand, Jean-Pierre, 2006. "On time-scaling of risk and the square-root-of-time rule," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2701-2713, October.
    10. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
    11. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    12. Moraux, Franck, 2004. "Modeling the business risk of financially weakened firms: A new approach for corporate bond pricing," International Review of Financial Analysis, Elsevier, vol. 13(1), pages 47-61.
    13. Stephan Dieckmann & Michael Gallmeyer, 2006. "Pricing Rare Event Risk in Emerging Markets," 2006 Meeting Papers 305, Society for Economic Dynamics.
    14. Colino, Jesús P. & Stute, Winfried, 2008. "Credit risk with semimartingales and risk-neutrality," DES - Working Papers. Statistics and Econometrics. WS ws085417, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Zaevski, Tsvetelin S. & Kounchev, Ognyan & Savov, Mladen, 2019. "Two frameworks for pricing defaultable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 309-319.
    16. Arne Lokka & Junwei Xu, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model with Levy processes," Papers 2002.03376, arXiv.org, revised Sep 2020.
    17. Hongming Huang & Yildiray Yildirim, 2008. "Leverage, options liabilities, and corporate bond pricing," Review of Derivatives Research, Springer, vol. 11(3), pages 245-276, October.
    18. Olivier Gu'eant & Jean-Michel Lasry & Jiang Pu, 2014. "A convex duality method for optimal liquidation with participation constraints," Papers 1407.4614, arXiv.org, revised Dec 2014.
    19. Philippe Bergault & Fayc{c}al Drissi & Olivier Gu'eant, 2021. "Multi-asset optimal execution and statistical arbitrage strategies under Ornstein-Uhlenbeck dynamics," Papers 2103.13773, arXiv.org, revised Mar 2022.
    20. Specht, Leon, 2023. "An Empirical Analysis of European Credit Default Swap Spread Dynamics," Junior Management Science (JUMS), Junior Management Science e. V., vol. 8(1), pages 1-42.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1709.05837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.