IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i1p165-172.html
   My bibliography  Save this article

A note on first-passage times of continuously time-changed Brownian motion

Author

Listed:
  • Hieber, Peter
  • Scherer, Matthias

Abstract

The probability of a Brownian motion with drift to remain between two constant barriers (for some period of time) is known explicitly. In mathematical finance, this and related results are required, for example, for the pricing of single-barrier and double-barrier options in a Black–Scholes framework. One popular possibility to generalize the Black–Scholes model is to introduce a stochastic time scale. This equips the modelled returns with desirable stylized facts such as volatility clusters and jumps. For continuous time transformations, independent of the Brownian motion, we show that analytical results for the double-barrier problem can be obtained via the Laplace transform of the time change. The result is a very efficient power series representation for the resulting exit probabilities. We discuss possible specifications of the time change based on integrated intensities of shot-noise type and of basic affine process type.

Suggested Citation

  • Hieber, Peter & Scherer, Matthias, 2012. "A note on first-passage times of continuously time-changed Brownian motion," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 165-172.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:1:p:165-172
    DOI: 10.1016/j.spl.2011.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211003129
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2011.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. R. Hurd, 2009. "Credit risk modeling using time-changed Brownian motion," Papers 0904.2376, arXiv.org.
    2. T. R. Hurd, 2009. "Credit Risk Modeling Using Time-Changed Brownian Motion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(08), pages 1213-1230.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Artur Sepp, 2004. "Analytical Pricing Of Double-Barrier Options Under A Double-Exponential Jump Diffusion Process: Applications Of Laplace Transform," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 151-175.
    5. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    6. Black, Fischer & Cox, John C, 1976. "Valuing Corporate Securities: Some Effects of Bond Indenture Provisions," Journal of Finance, American Finance Association, vol. 31(2), pages 351-367, May.
    7. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    8. Dassios, Angelos & Jang, Jiwook, 2003. "Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity," LSE Research Online Documents on Economics 2849, London School of Economics and Political Science, LSE Library.
    9. Naoto Kunitomo & Masayuki Ikeda, 1992. "Pricing Options With Curved Boundaries1," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 275-298, October.
    10. Hélyette Geman & Marc Yor, 1996. "Pricing And Hedging Double‐Barrier Options: A Probabilistic Approach," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 365-378, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mario Abundo, 2018. "The Randomized First-Hitting Problem of Continuously Time-Changed Brownian Motion," Mathematics, MDPI, vol. 6(6), pages 1-10, May.
    2. Shantanu Awasthi & Indranil SenGupta, 2020. "First exit-time analysis for an approximate Barndorff-Nielsen and Shephard model with stationary self-decomposable variance process," Papers 2006.07167, arXiv.org, revised Jan 2021.
    3. Anna Louisa Merkel & Johannes Lohse, 2019. "Is fairness intuitive? An experiment accounting for subjective utility differences under time pressure," Experimental Economics, Springer;Economic Science Association, vol. 22(1), pages 24-50, March.
    4. Lorenzo Mercuri & Andrea Perchiazzo & Edit Rroji, 2020. "Finite Mixture Approximation of CARMA(p,q) Models," Papers 2005.10130, arXiv.org, revised May 2020.
    5. Fernández Lexuri & Hieber Peter & Scherer Matthias, 2013. "Double-barrier first-passage times of jump-diffusion processes," Monte Carlo Methods and Applications, De Gruyter, vol. 19(2), pages 107-141, July.
    6. Deelstra, Griselda & Hieber, Peter, 2023. "Randomization and the valuation of guaranteed minimum death benefits," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1218-1236.
    7. Qing-Qing Yang & Wai-Ki Ching & Jia-Wen Gu & Tak Kwong Wong, 2017. "Optimal Liquidation Problems in a Randomly-Terminated Horizon," Papers 1709.05837, arXiv.org.
    8. Jos'e Manuel Corcuera & Arturo Valdivia, 2016. "CoCos under short-term uncertainty," Papers 1602.00094, arXiv.org.
    9. Marcos Escobar & Peter Hieber & Matthias Scherer, 2014. "Efficiently pricing double barrier derivatives in stochastic volatility models," Review of Derivatives Research, Springer, vol. 17(2), pages 191-216, July.
    10. G. D’Onofrio & E. Pirozzi, 2019. "Asymptotics of Two-boundary First-exit-time Densities for Gauss-Markov Processes," Methodology and Computing in Applied Probability, Springer, vol. 21(3), pages 735-752, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández Lexuri & Hieber Peter & Scherer Matthias, 2013. "Double-barrier first-passage times of jump-diffusion processes," Monte Carlo Methods and Applications, De Gruyter, vol. 19(2), pages 107-141, July.
    2. Marcos Escobar & Peter Hieber & Matthias Scherer, 2014. "Efficiently pricing double barrier derivatives in stochastic volatility models," Review of Derivatives Research, Springer, vol. 17(2), pages 191-216, July.
    3. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2020. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Papers 2006.15312, arXiv.org, revised May 2022.
    4. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    5. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    6. Slim, Skander, 2016. "On the source of stochastic volatility: Evidence from CAC40 index options during the subprime crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 63-76.
    7. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    8. Sang Byung Seo & Jessica A. Wachter, 2016. "Do Rare Events Explain CDX Tranche Spreads?," NBER Working Papers 22723, National Bureau of Economic Research, Inc.
    9. Thomas R. Hurd & Zhuowei Zhou, 2011. "Two-factor capital structure models for equity and credit," Papers 1110.5846, arXiv.org.
    10. Li Chen & H. Vincent Poor, 2003. "Information Asymmetry, Corporate Debt Financing and Optimal Investment Decisions: A Reduced Form Approach," Finance 0312008, University Library of Munich, Germany.
    11. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2019. "A generalised CIR process with externally-exciting and self-exciting jumps and its applications in insurance and finance," LSE Research Online Documents on Economics 102043, London School of Economics and Political Science, LSE Library.
    12. Li, Junye, 2012. "Option-implied volatility factors and the cross-section of market risk premia," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 249-260.
    13. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    14. Igor V. Kravchenko & Vladislav V. Kravchenko & Sergii M. Torba & Jos'e Carlos Dias, 2017. "Pricing double barrier options on homogeneous diffusions: a Neumann series of Bessel functions representation," Papers 1712.08247, arXiv.org.
    15. Dmitry Davydov & Vadim Linetsky, 2003. "Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach," Operations Research, INFORMS, vol. 51(2), pages 185-209, April.
    16. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, August.
    17. Nawalkha, Sanjay K & Zhuo, Xiaoyang, 2020. "A Theory of Equivalent Expectation Measures for Expected Prices of Contingent Claims," OSF Preprints hsxtu, Center for Open Science.
    18. Li, Junye & Favero, Carlo & Ortu, Fulvio, 2012. "A spectral estimation of tempered stable stochastic volatility models and option pricing," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3645-3658.
    19. Elisa Luciano & Wim Schoutens, 2006. "A multivariate jump-driven financial asset model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 385-402.
    20. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:1:p:165-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.