IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1709.05823.html
   My bibliography  Save this paper

A new approach to the modeling of financial volumes

Author

Listed:
  • Guglielmo D'Amico
  • Filippo Petroni

Abstract

In this paper we study the high frequency dynamic of financial volumes of traded stocks by using a semi-Markov approach. More precisely we assume that the intraday logarithmic change of volume is described by a weighted-indexed semi-Markov chain model. Based on this assumptions we show that this model is able to reproduce several empirical facts about volume evolution like time series dependence, intra-daily periodicity and volume asymmetry. Results have been obtained from a real data application to high frequency data from the Italian stock market from first of January 2007 until end of December 2010.

Suggested Citation

  • Guglielmo D'Amico & Filippo Petroni, 2017. "A new approach to the modeling of financial volumes," Papers 1709.05823, arXiv.org.
  • Handle: RePEc:arx:papers:1709.05823
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1709.05823
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guglielmo D'Amico & Filippo Petroni, 2012. "Weighted-indexed semi-Markov models for modeling financial returns," Papers 1205.2551, arXiv.org, revised Jun 2012.
    2. D’Amico, Guglielmo & Petroni, Filippo, 2012. "A semi-Markov model for price returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4867-4876.
    3. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    4. Guglielmo D'Amico & Filippo Petroni, 2011. "A semi-Markov model with memory for price changes," Papers 1109.4259, arXiv.org, revised Dec 2011.
    5. Guglielmo D'Amico & Filippo Petroni, 2013. "Multivariate high-frequency financial data via semi-Markov processes," Papers 1305.0436, arXiv.org.
    6. de Jong,Frank & Rindi,Barbara, 2009. "The Microstructure of Financial Markets," Cambridge Books, Cambridge University Press, number 9780521687270, October.
    7. Jain, Prem C. & Joh, Gun-Ho, 1988. "The Dependence between Hourly Prices and Trading Volume," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 269-283, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guglielmo D'Amico & Filippo Petroni, 2020. "A micro-to-macro approach to returns, volumes and waiting times," Papers 2007.06262, arXiv.org.
    2. Guglielmo D'Amico & Ada Lika & Filippo Petroni, 2018. "Indexed Markov Chains for financial data: testing for the number of states of the index process," Papers 1802.01540, arXiv.org.
    3. Guglielmo D’Amico & Ada Lika & Filippo Petroni, 2019. "Change point dynamics for financial data: an indexed Markov chain approach," Annals of Finance, Springer, vol. 15(2), pages 247-266, June.
    4. Petroni, Filippo & Serva, Maurizio, 2016. "Observability of market daily volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 838-842.
    5. Filippo Petroni & Maurizio Serva, 2015. "Observability of Market Daily Volatility," Papers 1503.08032, arXiv.org.
    6. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2013. "First and second order semi-Markov chains for wind speed modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1194-1201.
    7. D’Amico, Guglielmo & Petroni, Filippo, 2018. "Copula based multivariate semi-Markov models with applications in high-frequency finance," European Journal of Operational Research, Elsevier, vol. 267(2), pages 765-777.
    8. G. D'Amico & F. Petroni & F. Prattico, 2013. "Semi-Markov Models in High Frequency Finance: A Review," Papers 1312.3894, arXiv.org.
    9. Guglielmo D'Amico & Filippo Petroni, 2013. "Multivariate high-frequency financial data via semi-Markov processes," Papers 1305.0436, arXiv.org.
    10. Giovanni Masala & Filippo Petroni, 2023. "Drawdown risk measures for asset portfolios with high frequency data," Annals of Finance, Springer, vol. 19(2), pages 265-289, June.
    11. D’Amico, Guglielmo & Petroni, Filippo, 2023. "ROCOF of higher order for semi-Markov processes," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    12. Guglielmo D'Amico & Montserrat Guillen & Raimondo Manca & Filippo Petroni, 2017. "Multi-state models for evaluating conversion options in life insurance," Papers 1707.01028, arXiv.org.
    13. Gurgul Henryk & Machno Artur, 2017. "Trade Pattern on Warsaw Stock Exchange and Prediction of Number of Trades," Statistics in Transition New Series, Polish Statistical Association, vol. 18(1), pages 91-114, March.
    14. Guglielmo D'Amico, 2016. "Generalized semi-Markovian dividend discount model: risk and return," Papers 1605.02472, arXiv.org.
    15. Guglielmo D'Amico & Filippo Petroni, 2012. "Weighted-indexed semi-Markov models for modeling financial returns," Papers 1205.2551, arXiv.org, revised Jun 2012.
    16. D׳Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2015. "Reliability measures for indexed semi-Markov chains applied to wind energy production," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 170-177.
    17. Guglielmo D’Amico & Giovanni Masala & Filippo Petroni & Robert Adam Sobolewski, 2020. "Managing Wind Power Generation via Indexed Semi-Markov Model and Copula," Energies, MDPI, vol. 13(16), pages 1-21, August.
    18. Iwatsubo, Kentaro & Watkins, Clinton & Xu, Tao, 2018. "Intraday seasonality in efficiency, liquidity, volatility and volume: Platinum and gold futures in Tokyo and New York," Journal of Commodity Markets, Elsevier, vol. 11(C), pages 59-71.
    19. Ferriani, Fabrizio, 2010. "Informed and uninformed traders at work: evidence from the French market," MPRA Paper 24487, University Library of Munich, Germany.
    20. Cheuathonghua, Massaporn & Padungsaksawasdi, Chaiyuth, 2024. "The volume-implied volatility relation in financial markets: A behavioral explanation," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1709.05823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.