IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1709.05519.html
   My bibliography  Save this paper

Semi-Static and Sparse Variance-Optimal Hedging

Author

Listed:
  • Paolo Di Tella
  • Martin Haubold
  • Martin Keller-Ressel

Abstract

We consider hedging of a contingent claim by a 'semi-static' strategy composed of a dynamic position in one asset and static (buy-and-hold) positions in other assets. We give general representations of the optimal strategy and the hedging error under the criterion of variance-optimality and provide tractable formulas using Fourier-integration in case of the Heston model. We also consider the problem of optimally selecting a sparse semi-static hedging strategy, i.e. a strategy which only uses a small subset of available hedging assets. The developed methods are illustrated in an extended numerical example where we compute a sparse semi-static hedge for a variance swap using European options as static hedging assets.

Suggested Citation

  • Paolo Di Tella & Martin Haubold & Martin Keller-Ressel, 2017. "Semi-Static and Sparse Variance-Optimal Hedging," Papers 1709.05519, arXiv.org.
  • Handle: RePEc:arx:papers:1709.05519
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1709.05519
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Friedrich Hubalek & Jan Kallsen & Leszek Krawczyk, 2006. "Variance-optimal hedging for processes with stationary independent increments," Papers math/0607112, arXiv.org.
    2. Aurélien Alfonsi, 2015. "Affine Diffusions and Related Processes: Simulation, Theory and Applications," Post-Print hal-03127212, HAL.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    5. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    6. Paolo Di Tella & Martin Haubold & Martin Keller-Ressel, 2017. "Semi-Static Variance-Optimal Hedging in Stochastic Volatility Models with Fourier Representation," Papers 1709.05527, arXiv.org.
    7. Peter Carr, 2011. "Semi-Static Hedging Of Barrier Options Under Poisson Jumps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(07), pages 1091-1111.
    8. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    9. Föllmer, H. & Schweizer, M., 1988. "Hedging by Sequential Regression: An Introduction to the Mathematics of Option Trading," ASTIN Bulletin, Cambridge University Press, vol. 18(2), pages 147-160, November.
    10. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolo Di Tella & Martin Haubold & Martin Keller-Ressel, 2017. "Semi-Static Variance-Optimal Hedging in Stochastic Volatility Models with Fourier Representation," Papers 1709.05527, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Di Tella & Martin Haubold & Martin Keller-Ressel, 2017. "Semi-Static Variance-Optimal Hedging in Stochastic Volatility Models with Fourier Representation," Papers 1709.05527, arXiv.org.
    2. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    3. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    4. Sergey Badikov & Antoine Jacquier & Daphne Qing Liu & Patrick Roome, 2016. "No-arbitrage bounds for the forward smile given marginals," Papers 1603.06389, arXiv.org, revised Oct 2016.
    5. Lorenzo Torricelli, 2012. "Pricing joint claims on an asset and its realized variance under stochastic volatility models," Papers 1206.2112, arXiv.org.
    6. Erhan Bayraktar & Constantinos Kardaras & Hao Xing, 2010. "Valuation equations for stochastic volatility models," Papers 1004.3299, arXiv.org, revised Dec 2011.
    7. Alexander M. G. Cox & Jiajie Wang, 2013. "Optimal robust bounds for variance options," Papers 1308.4363, arXiv.org.
    8. Alexander Lipton, 2023. "Kelvin Waves, Klein-Kramers and Kolmogorov Equations, Path-Dependent Financial Instruments: Survey and New Results," Papers 2309.04547, arXiv.org.
    9. Ariel Neufeld & Julian Sester, 2021. "A deep learning approach to data-driven model-free pricing and to martingale optimal transport," Papers 2103.11435, arXiv.org, revised Dec 2022.
    10. Li, Minqiang & Mercurio, Fabio, 2013. "Closed-Form Approximation of Timer Option Prices under General Stochastic Volatility Models," MPRA Paper 47465, University Library of Munich, Germany.
    11. Jan Baldeaux & Alexander Badran, 2012. "Consistent Modeling of VIX and Equity Derivatives Using a 3/2 Plus Jumps Model," Research Paper Series 306, Quantitative Finance Research Centre, University of Technology, Sydney.
    12. Baldeaux, Jan & Grasselli, Martino & Platen, Eckhard, 2015. "Pricing currency derivatives under the benchmark approach," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 34-48.
    13. Nicolas Langren'e & Geoffrey Lee & Zili Zhu, 2015. "Switching to non-affine stochastic volatility: A closed-form expansion for the Inverse Gamma model," Papers 1507.02847, arXiv.org, revised Mar 2016.
    14. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model uncertainty, recalibration, and the emergence of delta–vega hedging," Finance and Stochastics, Springer, vol. 21(4), pages 873-930, October.
    15. Peter Carr & Sander Willems, 2019. "A lognormal type stochastic volatility model with quadratic drift," Papers 1908.07417, arXiv.org.
    16. Gerald Cheang & Carl Chiarella & Andrew Ziogas, 2009. "An Analysis of American Options Under Heston Stochastic Volatility and Jump-Diffusion Dynamics," Research Paper Series 256, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    18. Jan Baldeaux & Alexander Badran, 2014. "Consistent Modelling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 299-312, September.
    19. Gerald H. L. Cheang & Carl Chiarella & Andrew Ziogas, 2013. "The representation of American options prices under stochastic volatility and jump-diffusion dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 13(2), pages 241-253, January.
    20. Baldeaux, Jan & Ignatieva, Katja & Platen, Eckhard, 2018. "Detecting money market bubbles," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 369-379.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1709.05519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.