IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1708.08904.html
   My bibliography  Save this paper

Minimax theorems for American options in incomplete markets without time-consistency

Author

Listed:
  • Denis Belomestny
  • Volker Kraetschmer

Abstract

In this paper we give sufficient conditions guaranteeing the validity of the well-known minimax theorem for the lower Snell envelope with respect to a family of absolutely continuous probability measures. Such minimax results play an important role in the characterisation of arbitrage-free prices of American contingent claims in incomplete markets. Our conditions do not rely on the notions of stability under pasting or time-consistency and reveal some unexpected connection between the minimax result and the path properties of the corresponding density process.

Suggested Citation

  • Denis Belomestny & Volker Kraetschmer, 2017. "Minimax theorems for American options in incomplete markets without time-consistency," Papers 1708.08904, arXiv.org.
  • Handle: RePEc:arx:papers:1708.08904
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1708.08904
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amarante, Massimiliano, 2014. "A characterization of exact non-atomic market games," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 59-62.
    2. Denis Belomestny & Volker Kraetschmer, 2014. "Optimal stopping under model uncertainty: randomized stopping times approach," Papers 1405.2240, arXiv.org, revised Dec 2014.
    3. Erhan Bayraktar & Song Yao, 2009. "Optimal Stopping for Non-linear Expectations," Papers 0905.3601, arXiv.org, revised Jan 2011.
    4. Bayraktar, Erhan & Yao, Song, 2011. "Optimal stopping for non-linear expectations--Part I," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 185-211, February.
    5. Ioannis Karatzas & (*), S. G. Kou, 1998. "Hedging American contingent claims with constrained portfolios," Finance and Stochastics, Springer, vol. 2(3), pages 215-258.
    6. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denis Belomestny & Tobias Hübner & Volker Krätschmer & Sascha Nolte, 2019. "Minimax theorems for American options without time-consistency," Finance and Stochastics, Springer, vol. 23(1), pages 209-238, January.
    2. Denis Belomestny & Tobias Hübner & Volker Krätschmer, 2022. "Solving optimal stopping problems under model uncertainty via empirical dual optimisation," Finance and Stochastics, Springer, vol. 26(3), pages 461-503, July.
    3. Grigorova, Miryana & Imkeller, Peter & Ouknine, Youssef & Quenez, Marie-Claire, 2018. "Optimal Stopping With ƒ-Expectations: the irregular case," Center for Mathematical Economics Working Papers 587, Center for Mathematical Economics, Bielefeld University.
    4. Bayraktar, Erhan & Yao, Song, 2011. "Optimal stopping for non-linear expectations--Part II," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 212-264, February.
    5. Marcel Nutz & Jianfeng Zhang, 2012. "Optimal stopping under adverse nonlinear expectation and related games," Papers 1212.2140, arXiv.org, revised Sep 2015.
    6. Bayraktar, Erhan & Yao, Song, 2015. "Doubly reflected BSDEs with integrable parameters and related Dynkin games," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4489-4542.
    7. Irina Penner & Anthony Reveillac, 2013. "Risk measures for processes and BSDEs," Papers 1304.4853, arXiv.org.
    8. Bayraktar, Erhan & Yao, Song, 2017. "Optimal stopping with random maturity under nonlinear expectations," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2586-2629.
    9. Irina Penner & Anthony Réveillac, 2015. "Risk measures for processes and BSDEs," Finance and Stochastics, Springer, vol. 19(1), pages 23-66, January.
    10. Bayraktar, Erhan & Yao, Song, 2012. "Quadratic reflected BSDEs with unbounded obstacles," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1155-1203.
    11. Klebert Kentia & Christoph Kuhn, 2017. "Nash equilibria for game contingent claims with utility-based hedging," Papers 1707.09351, arXiv.org, revised Sep 2018.
    12. Grigorova, Miryana & Imkeller, Peter & Ouknine, Youssef & Quenez, Marie-Claire, 2020. "Optimal stopping with f-expectations: The irregular case," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1258-1288.
    13. Quenez, Marie-Claire & Sulem, Agnès, 2014. "Reflected BSDEs and robust optimal stopping for dynamic risk measures with jumps," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 3031-3054.
    14. Irina Penner & Anthony Réveillac, 2013. "Risk measures for processes and BSDEs," Working Papers hal-00814702, HAL.
    15. Ariel Neufeld & Mario Sikic, 2017. "Nonconcave Robust Optimization with Discrete Strategies under Knightian Uncertainty," Papers 1711.03875, arXiv.org, revised Apr 2019.
    16. Miryana Grigorova & Marie-Claire Quenez, 2017. "Optimal stopping and a non-zero-sum Dynkin game in discrete time with risk measures induced by BSDEs," Papers 1705.03724, arXiv.org.
    17. Erhan Bayraktar & Song Yao, 2013. "On the Robust Optimal Stopping Problem," Papers 1301.0091, arXiv.org, revised Apr 2016.
    18. Miryana Grigorova & Marie-Claire Quenez, 2017. "Optimal stopping and a non-zero-sum Dynkin game in discrete time with risk measures induced by BSDEs," Post-Print hal-01519215, HAL.
    19. Moreno Othón M., 2014. "Consumption of Durable Goods under Ambiguity," Working Papers 2014-02, Banco de México.
    20. Volker Krätschmer & Marcel Ladkau & Roger J. A. Laeven & John G. M. Schoenmakers & Mitja Stadje, 2018. "Optimal Stopping Under Uncertainty in Drift and Jump Intensity," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1177-1209, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1708.08904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.