IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1707.05253.html
   My bibliography  Save this paper

An Optimal Stopping Problem Modeling Technical Analysis

Author

Listed:
  • Jun Maeda
  • Saul D. Jacka

Abstract

We present a solution to an optimal stopping problem for a process with a wide-class of novel dynamics. The dynamics model the support/resistance line concept from financial technical analysis.

Suggested Citation

  • Jun Maeda & Saul D. Jacka, 2017. "An Optimal Stopping Problem Modeling Technical Analysis," Papers 1707.05253, arXiv.org, revised Mar 2020.
  • Handle: RePEc:arx:papers:1707.05253
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1707.05253
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blanchet-Scalliet, Christophette & Diop, Awa & Gibson, Rajna & Talay, Denis & Tanre, Etienne, 2007. "Technical analysis compared to mathematical models based methods under parameters mis-specification," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1351-1373, May.
    2. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1770, August.
    3. T. R. A. Corns & S. E. Satchell, 2007. "Skew Brownian Motion and Pricing European Options," The European Journal of Finance, Taylor & Francis Journals, vol. 13(6), pages 523-544.
    4. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    5. Rossello, Damiano, 2012. "Arbitrage in skew Brownian motion models," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 50-56.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vicky Henderson & Saul Jacka & Ruiqi Liu, 2021. "The Support and Resistance Line Method: An Analysis via Optimal Stopping," Papers 2103.02331, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    2. Friesen, Geoffrey C. & Weller, Paul A. & Dunham, Lee M., 2009. "Price trends and patterns in technical analysis: A theoretical and empirical examination," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1089-1100, June.
    3. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    4. Sid Ghoshal & Stephen Roberts, 2016. "Extracting Predictive Information from Heterogeneous Data Streams using Gaussian Processes," Papers 1603.06202, arXiv.org, revised Jul 2018.
    5. Bohm, Volker & Wenzelburger, Jan, 2005. "On the performance of efficient portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 29(4), pages 721-740, April.
    6. Stephan Schulmeister, 2000. "Technical Analysis and Exchange Rate Dynamics," WIFO Studies, WIFO, number 25857.
    7. Fischer, Thomas & Riedler, Jesper, 2014. "Prices, debt and market structure in an agent-based model of the financial market," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 95-120.
    8. Sid Ghoshal & Stephen J. Roberts, 2018. "Thresholded ConvNet Ensembles: Neural Networks for Technical Forecasting," Papers 1807.03192, arXiv.org, revised Jul 2018.
    9. Ben R. Marshall & Nhut H. Nguyen & Nuttawat Visaltanachoti, 2017. "Time series momentum and moving average trading rules," Quantitative Finance, Taylor & Francis Journals, vol. 17(3), pages 405-421, March.
    10. James Angel & Douglas McCabe, 2013. "Fairness in Financial Markets: The Case of High Frequency Trading," Journal of Business Ethics, Springer, vol. 112(4), pages 585-595, February.
    11. Michael McAleer & John Suen & Wing Keung Wong, 2016. "Profiteering from the Dot-Com Bubble, Subprime Crisis and Asian Financial Crisis," The Japanese Economic Review, Japanese Economic Association, vol. 67(3), pages 257-279, September.
    12. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    13. K. J. Hong & S. Satchell, 2015. "Time series momentum trading strategy and autocorrelation amplification," Quantitative Finance, Taylor & Francis Journals, vol. 15(9), pages 1471-1487, September.
    14. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
    15. Sukanto Bhattacharya & Kuldeep Kumar, 2006. "A Computational Exploration of the Efficacy of Fibonacci Sequences in Technical Analysis and Trading," Annals of Economics and Finance, Society for AEF, vol. 7(1), pages 185-196, May.
    16. Nikolai Dokuchaev, 2015. "Modelling Possibility of Short-Term Forecasting of Market Parameters for Portfolio Selection," Annals of Economics and Finance, Society for AEF, vol. 16(1), pages 143-161, May.
    17. Chong Terence Tai-Leung & Poon Ka-Ho, 2017. "A new recognition algorithm for “head-and-shoulders” price patterns," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(5), pages 1-18, December.
    18. Sang Hyuk Kim & Hee Soo Lee & Han Jun Ko & Seung Hwan Jeong & Hyun Woo Byun & Kyong Joo Oh, 2018. "Pattern Matching Trading System Based on the Dynamic Time Warping Algorithm," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    19. Dan Anghel, 2013. "How Reliable is the Moving Average Crossover Rule for an Investor on the Romanian Stock Market?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 5(2), pages 089-115, December.
    20. Zhu, Min & Atri, Said & Yegen, Eyub, 2016. "Are candlestick trading strategies effective in certain stocks with distinct features?," Pacific-Basin Finance Journal, Elsevier, vol. 37(C), pages 116-127.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1707.05253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.