IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v7y1994i4p287-307.html
   My bibliography  Save this article

Numerical Schemes for Investment Models with Singular Transactions

Author

Listed:
  • Tourin, Agnes
  • Zariphopoulou, Thaleia

Abstract

This paper considers an infinite horizon investment-consumption model in which a single agent consumes and distributes his wealth between two assets, a bond and a stock. The problem of maximization of the total utility from consumption is treated, when state (amount allocated in assets) and control (consumption, rates of trading) constraints are present. The value function is characterized as the unique viscosity solution of the Hamilton-Jacobi-Bellman equation which, actually, is a Variational Inequality with gradient constraints. Numerical schemes are then constructed in order to compute the value function and the location of the free boundaries of the so-called transaction regions. These schemes are a combination of implicit and explicit schemes; their convergence is obtained from the uniqueness of viscosity solutions to the HJB equation. Citation Copyright 1994 by Kluwer Academic Publishers.

Suggested Citation

  • Tourin, Agnes & Zariphopoulou, Thaleia, 1994. "Numerical Schemes for Investment Models with Singular Transactions," Computational Economics, Springer;Society for Computational Economics, vol. 7(4), pages 287-307.
  • Handle: RePEc:kap:compec:v:7:y:1994:i:4:p:287-307
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vila, Jean-Luc & Zariphopoulou, Thaleia, 1997. "Optimal Consumption and Portfolio Choice with Borrowing Constraints," Journal of Economic Theory, Elsevier, vol. 77(2), pages 402-431, December.
    2. Sona Kilianova & Daniel Sevcovic, 2013. "Transformation Method for Solving Hamilton-Jacobi-Bellman Equation for Constrained Dynamic Stochastic Optimal Allocation Problem," Papers 1307.3672, arXiv.org, revised Jul 2013.
    3. Daniel Sevcovic, 2017. "Nonlinear Parabolic Equations arising in Mathematical Finance," Papers 1707.01436, arXiv.org.
    4. Ciarcià, Carla & Daniele, Patrizia, 2016. "New existence theorems for quasi-variational inequalities and applications to financial models," European Journal of Operational Research, Elsevier, vol. 251(1), pages 288-299.
    5. Patrizia Daniele & Sofia Giuffrè & Mariagrazia Lorino, 2016. "Functional inequalities, regularity and computation of the deficit and surplus variables in the financial equilibrium problem," Journal of Global Optimization, Springer, vol. 65(3), pages 575-596, July.
    6. Arash Fahim & Wan-Yu Tsai, 2017. "A Numerical Scheme for A Singular control problem: Investment-Consumption Under Proportional Transaction Costs," Papers 1711.01017, arXiv.org.
    7. Barbagallo, Annamaria & Daniele, Patrizia & Giuffrè, Sofia & Maugeri, Antonino, 2014. "Variational approach for a general financial equilibrium problem: The Deficit Formula, the Balance Law and the Liability Formula. A path to the economy recovery," European Journal of Operational Research, Elsevier, vol. 237(1), pages 231-244.
    8. repec:dau:papers:123456789/6192 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:7:y:1994:i:4:p:287-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.