IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1305.0105.html
   My bibliography  Save this paper

Semi Markov model for market microstructure

Author

Listed:
  • Pietro Fodra

    (LPMA)

  • Huy^en Pham

    (LPMA)

Abstract

We introduce a new model for describing the fluctuations of a tick-by-tick single asset price. Our model is based on Markov renewal processes. We consider a point process associated to the timestamps of the price jumps, and marks associated to price increments. By modeling the marks with a suitable Markov chain, we can reproduce the strong mean-reversion of price returns known as microstructure noise. Moreover, by using Markov renewal processes, we can model the presence of spikes in intensity of market activity, i.e. the volatility clustering, and consider dependence between price increments and jump times. We also provide simple parametric and nonparametric statistical procedures for the estimation of our model. We obtain closed-form formula for the mean signature plot, and show the diffusive behavior of our model at large scale limit. We illustrate our results by numerical simulations, and that our model is consistent with empirical data on the Euribor future.

Suggested Citation

  • Pietro Fodra & Huy^en Pham, 2013. "Semi Markov model for market microstructure," Papers 1305.0105, arXiv.org.
  • Handle: RePEc:arx:papers:1305.0105
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1305.0105
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pietro Fodra & Huy^en Pham, 2013. "High frequency trading and asymptotics for small risk aversion in a Markov renewal model," Papers 1310.1756, arXiv.org, revised Jan 2015.
    2. Nelson Vadori & Anatoliy Swishchuk, 2019. "Inhomogeneous Random Evolutions: Limit Theorems and Financial Applications," Mathematics, MDPI, vol. 7(5), pages 1-62, May.
    3. Charles-Albert Lehalle & Eyal Neuman, 2019. "Incorporating signals into optimal trading," Finance and Stochastics, Springer, vol. 23(2), pages 275-311, April.
    4. Anatoliy Swishchuk & Nelson Vadori, 2016. "A Semi-Markovian Modeling of Limit Order Markets," Papers 1601.01710, arXiv.org.
    5. Marc Hoffmann & Mauricio Labadie & Charles-Albert Lehalle & Gilles Pagès & Huyên Pham & Mathieu Rosenbaum, 2013. "Optimization And Statistical Methods For High Frequency Finance," Post-Print hal-01102785, HAL.
    6. Pietro Fodra & Huyen Pham, 2013. "High frequency trading in a Markov renewal model," Working Papers hal-00867113, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1305.0105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.