IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1612.03698.html
   My bibliography  Save this paper

Fractal Optimization of Market Neutral Portfolio

Author

Listed:
  • Sergey Kamenshchikov
  • Ilia Drozdov

Abstract

A fractal approach to the long-short portfolio optimization is proposed. The algorithmic system based on the composition of market-neutral spreads into a single entity was considered. The core of the optimization scheme is a fractal walk model of returns, optimizing a risk aversion according to the investment horizon. The covariance matrix of spread returns has been used for the optimization and modified according to the Hurst stability analysis. Out-of-sample performance data has been represented for the space of exchange traded funds in five period time period of observation. The considered portfolio system has turned out to be statistically more stable than a passive investment into benchmark with higher risk adjusted cumulative return over the observed period.

Suggested Citation

  • Sergey Kamenshchikov & Ilia Drozdov, 2016. "Fractal Optimization of Market Neutral Portfolio," Papers 1612.03698, arXiv.org, revised Dec 2016.
  • Handle: RePEc:arx:papers:1612.03698
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1612.03698
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dubovikov, M.M & Starchenko, N.V & Dubovikov, M.S, 2004. "Dimension of the minimal cover and fractal analysis of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 591-608.
    2. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    3. Paolo Laureti & Matus Medo & Yi-Cheng Zhang, 2010. "Analysis of Kelly-optimal portfolios," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 689-697.
    4. Burton G. Malkiel, 2003. "Passive Investment Strategies and Efficient Markets," European Financial Management, European Financial Management Association, vol. 9(1), pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    2. Sabur Mollah & Asma Mobarek, 2009. "Market volatility across countries – evidence from international markets," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 26(4), pages 257-274, October.
    3. Szubzda Filip & Chlebus Marcin, 2019. "Comparison of Block Maxima and Peaks Over Threshold Value-at-Risk models for market risk in various economic conditions," Central European Economic Journal, Sciendo, vol. 6(53), pages 70-85, January.
    4. Rui Vilela Mendes & M. J. Oliveira, 2006. "A data-reconstructed fractional volatility model," Papers math/0602013, arXiv.org, revised Jun 2007.
    5. Alexander Philipov & Mark Glickman, 2006. "Factor Multivariate Stochastic Volatility via Wishart Processes," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 311-334.
    6. Prosper Dovonon, 2013. "Conditionally Heteroskedastic Factor Models With Skewness And Leverage Effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1110-1137, November.
    7. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    8. Ajeet Jain & Sascha Strobl, 2017. "The effect of volatility persistence on excess returns," Review of Financial Economics, John Wiley & Sons, vol. 32(1), pages 58-63, January.
    9. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    10. Bachar Fakhry & Christian Richter, 2018. "Does the Federal Constitutional Court Ruling Mean the German Financial Market is Efficient?," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 4(2), pages 111-125.
    11. Ron Bird & Lorenzo Casavecchia & Paul Woolley, 2008. "Insights into the Market Impact of Different Investment Styles," Working Paper Series 1, The Paul Woolley Centre for Capital Market Dysfunctionality, University of Technology, Sydney.
    12. Futeri Jazeilya Md Fadzil & John G. O’Hara & Wing Lon Ng, 2017. "Cross-sectional volatility index as a proxy for the VIX in an Asian market," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1364011-136, January.
    13. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    14. Matus Medo & Chi Ho Yeung & Yi-Cheng Zhang, 2008. "How to quantify the influence of correlations on investment diversification," Papers 0805.3397, arXiv.org, revised Feb 2009.
    15. Changli He & Annastiina Silvennoinen & Timo Teräsvirta, 2008. "Parameterizing Unconditional Skewness in Models for Financial Time Series," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 208-230, Spring.
    16. Wei Liu & Bruce Morley, 2009. "Volatility Forecasting in the Hang Seng Index using the GARCH Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 51-63, March.
    17. Andrey Dmitriev & Vasily Kornilov & Svetlana Maltseva, 2018. "Complexity of a Microblogging Social Network in the Framework of Modern Nonlinear Science," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    18. Ufuk Beyaztas & Beste H. Beyaztas, 2019. "On Jackknife-After-Bootstrap Method for Dependent Data," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1613-1632, April.
    19. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    20. Anders Tolver Jensen & Theis Lange, 2009. "On IGARCH and convergence of the QMLE for misspecified GARCH models," CREATES Research Papers 2009-06, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1612.03698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.