IDEAS home Printed from https://ideas.repec.org/a/kap/apfinm/v16y2009i1p51-63.html
   My bibliography  Save this article

Volatility Forecasting in the Hang Seng Index using the GARCH Approach

Author

Listed:
  • Wei Liu
  • Bruce Morley

Abstract

The aim of this paper is to add to the literature on volatility forecasting using data from the Hong Kong stock market to determine if forecasts from GARCH based models can outperform simple historical averaging models. Overall, unlike previous studies we find that the GARCH models with non-Normal distributions show a robust volatility forecasting performance in comparison to the historical models. The results indicate that although not all models outperform simple historical averaging, the EGARCH based models, with non-normal conditional volatility, tend to produce more accurate out-of-sample forecasts using both standard measures of forecast accuracy and financial loss functions. In addition we test for asymmetric adjustment in the Hang Seng, finding strong evidence of asymmetries due to the domination of financial and property firms in this market. Copyright Springer Science+Business Media, LLC. 2009

Suggested Citation

  • Wei Liu & Bruce Morley, 2009. "Volatility Forecasting in the Hang Seng Index using the GARCH Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 51-63, March.
  • Handle: RePEc:kap:apfinm:v:16:y:2009:i:1:p:51-63
    DOI: 10.1007/s10690-009-9086-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10690-009-9086-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10690-009-9086-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David McMillan & Alan Speight & Owain Apgwilym, 2000. "Forecasting UK stock market volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 10(4), pages 435-448.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Robert Engle, 2004. "Risk and Volatility: Econometric Models and Financial Practice," American Economic Review, American Economic Association, vol. 94(3), pages 405-420, June.
    4. Aggarwal, Reena & Inclan, Carla & Leal, Ricardo, 1999. "Volatility in Emerging Stock Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(1), pages 33-55, March.
    5. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    6. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    7. Duan, Jin-Chuan & Zhang, Hua, 2001. "Pricing Hang Seng Index options around the Asian financial crisis - A GARCH approach," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1989-2014, November.
    8. Lee, Keun Yeong, 1991. "Are the GARCH models best in out-of-sample performance?," Economics Letters, Elsevier, vol. 37(3), pages 305-308, November.
    9. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    10. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    11. Matthew Li, 2007. "Wealth, volume and stock market volatility: case of Hong Kong (1993-2001)," Applied Economics, Taylor & Francis Journals, vol. 39(15), pages 1937-1953.
    12. So, Mike K P & Li, W K & Lam, K, 2002. "A Threshold Stochastic Volatility Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(7), pages 473-500, November.
    13. Alan E. H. Speight & David G. McMillan, 2004. "Daily volatility forecasts: reassessing the performance of GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 449-460.
    14. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Longsheng Cheng & Mahboubeh Shadabfar & Arash Sioofy Khoojine, 2023. "A State-of-the-Art Review of Probabilistic Portfolio Management for Future Stock Markets," Mathematics, MDPI, vol. 11(5), pages 1-34, February.
    2. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    3. Guidi, Francesco, 2010. "Modelling and forecasting volatility of East Asian Newly Industrialized Countries and Japan stock markets with non-linear models," MPRA Paper 19851, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David McMillan & Raquel Quiroga Garcia, 2009. "Intra-day volatility forecasts," Applied Financial Economics, Taylor & Francis Journals, vol. 19(8), pages 611-623.
    2. Twm Evans & David McMillan, 2007. "Volatility forecasts: the role of asymmetric and long-memory dynamics and regional evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 17(17), pages 1421-1430.
    3. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    4. Peter Hansen & Asger Lunde, 2003. "Consistent Preordering with an Estimated Criterion Function, with an Application to the Evaluation and Comparison of Volatility Models," Working Papers 2003-01, Brown University, Department of Economics.
    5. Kambouroudis, Dimos S. & McMillan, David G., 2015. "Is there an ideal in-sample length for forecasting volatility?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 114-137.
    6. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
    7. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    8. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    9. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    10. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    11. Alan E. H. Speight & David G. McMillan, 2004. "Daily volatility forecasts: reassessing the performance of GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 449-460.
    12. T. -N. Nguyen & M. -N. Tran & R. Kohn, 2020. "Recurrent Conditional Heteroskedasticity," Papers 2010.13061, arXiv.org, revised Jan 2022.
    13. Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 445-463, October.
    14. McMillan, David G. & Kambouroudis, Dimos, 2009. "Are RiskMetrics forecasts good enough? Evidence from 31 stock markets," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 117-124, June.
    15. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    16. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    17. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    18. Trong‐Nghia Nguyen & Minh‐Ngoc Tran & Robert Kohn, 2022. "Recurrent conditional heteroskedasticity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1031-1054, August.
    19. Ercan Balaban & Asli Bayar & Robert Faff, 2006. "Forecasting stock market volatility: Further international evidence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(2), pages 171-188.
    20. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:16:y:2009:i:1:p:51-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.