IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4732491.html
   My bibliography  Save this article

Complexity of a Microblogging Social Network in the Framework of Modern Nonlinear Science

Author

Listed:
  • Andrey Dmitriev
  • Vasily Kornilov
  • Svetlana Maltseva

Abstract

Recent developments in nonlinear science have caused the formation of a new paradigm called the paradigm of complexity. The self-organized criticality theory constitutes the foundation of this paradigm. To estimate the complexity of a microblogging social network, we used one of the conceptual schemes of the paradigm, namely, the system of key signs of complexity of the external manifestations of the system irrespective of its internal structure. Our research revealed all the key signs of complexity of the time series of a number of microposts. We offer a new model of a microblogging social network as a nonlinear random dynamical system with additive noise in three-dimensional phase space. Implementations of this model in the adiabatic approximation possess all the key signs of complexity, making the model a reasonable evolutionary model for a microblogging social network. The use of adiabatic approximation allows us to model a microblogging social network as a nonlinear random dynamical system with multiplicative noise with the power-law in one-dimensional phase space.

Suggested Citation

  • Andrey Dmitriev & Vasily Kornilov & Svetlana Maltseva, 2018. "Complexity of a Microblogging Social Network in the Framework of Modern Nonlinear Science," Complexity, Hindawi, vol. 2018, pages 1-11, December.
  • Handle: RePEc:hin:complx:4732491
    DOI: 10.1155/2018/4732491
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/4732491.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/4732491.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/4732491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dubovikov, M.M & Starchenko, N.V & Dubovikov, M.S, 2004. "Dimension of the minimal cover and fractal analysis of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 591-608.
    2. Olemskoi, Alexander I. & Khomenko, Alexei V. & Kharchenko, Dmitrii O., 2003. "Self-organized criticality within fractional Lorenz scheme," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 323(C), pages 263-293.
    3. Anders Mollgaard & Joachim Mathiesen, 2015. "Emergent User Behavior on Twitter Modelled by a Stochastic Differential Equation," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-12, May.
    4. Benjamin Paul Chamberlain & Josh Levy-Kramer & Clive Humby & Marc Peter Deisenroth, 2018. "Real-time community detection in full social networks on a laptop," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-37, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey Dmitriev & Victor Dmitriev & Stepan Balybin, 2019. "Self-Organized Criticality on Twitter: Phenomenological Theory and Empirical Investigation Based on Data Analysis Results," Complexity, Hindawi, vol. 2019, pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrey Dmitriev & Victor Dmitriev & Stepan Balybin, 2019. "Self-Organized Criticality on Twitter: Phenomenological Theory and Empirical Investigation Based on Data Analysis Results," Complexity, Hindawi, vol. 2019, pages 1-16, December.
    2. Jiang, Kai & Liu, Zhifeng & Tian, Yang & Zhang, Tao & Yang, Congbin, 2022. "An estimation method of fractal parameters on rough surfaces based on the exact spectral moment using artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Didenko Alexander & Dubovikov Mikhail & Poutko Boris, 2015. "Forecasting coherent volatility breakouts," Вестник Финансового университета, CyberLeninka;Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования «Финансовый университет при Правительстве Российской Федерации» (Финансовый университет), issue 1 (85), pages 30-36.
    4. Miao Yu & Dong Liu & Jean Dieu Bazimenyera, 2013. "Diagnostic Complexity of Regional Groundwater Resources System Based on time series fractal dimension and Artificial Fish Swarm Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1897-1911, May.
    5. Belokolos, E.D. & Kharchenko, V.O. & Kharchenko, D.O., 2009. "Chaos in a generalized Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2595-2605.
    6. Silva, F.E. & Gonçalves, L.L. & Fereira, D.B.B. & Rebello, J.M.A., 2005. "Characterization of failure mechanism in composite materials through fractal analysis of acoustic emission signals," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 481-494.
    7. Suleymanov, Arif A. & Abbasov, Askar A. & Ismaylov, Aydin J., 2009. "Fractal analysis of time series in oil and gas production," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2474-2483.
    8. Sergey A. Kamenshchikov, 2014. "Transport catastrophe analysis as an alternative to a fractal description: theory and application to financial crisis time series," Papers 1405.6990, arXiv.org, revised Sep 2014.
    9. A. Didenko S. & M. Dubovikov M. & B. Poutko A. & А. Диденко С. & М. Дубовиков М. & Б. Путко А., 2015. "Прогнозирование Когерентных Разрывов Волатильности // Forecasting Coherent Volatility Breakouts," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, issue 1, pages 30-36.
    10. Sergey Kamenshchikov & Ilia Drozdov, 2016. "Fractal Optimization of Market Neutral Portfolio," Papers 1612.03698, arXiv.org, revised Dec 2016.
    11. Batten, Jonathan A. & Ellis, Craig A. & Fethertson, Thomas A., 2008. "Sample period selection and long-term dependence: New evidence from the Dow Jones index," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1126-1140.
    12. Putko, Boris & Didenko, Alexander & Dubovikov, Mikhail, 2014. "The model of volatility of the exchange rate (RUR/USD), based on the fractal characteristics of time series," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 36(4), pages 79-87.
    13. Pan, Jun-Shan & Li, Yuan-Qi & Hu, Han-Ping & Hu, Yong, 2021. "Modeling collective behavior of posting microblogs by stochastic differential equation with jump," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4732491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.