IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1611.02549.html
   My bibliography  Save this paper

Emerging interdependence between stock values during financial crashes

Author

Listed:
  • Jacopo Rocchi
  • Enoch Yan Lok Tsui
  • David Saad

Abstract

To identify emerging interdependencies between traded stocks we investigate the behavior of the stocks of FTSE 100 companies in the period 2000-2015, by looking at daily stock values. Exploiting the power of information theoretical measures to extract direct influences between multiple time series, we compute the information flow across stock values to identify several different regimes. While small information flows is detected in most of the period, a dramatically different situation occurs in the proximity of global financial crises, where stock values exhibit strong and substantial interdependence for a prolonged period. This behavior is consistent with what one would generally expect from a complex system near criticality in physical systems, showing the long lasting effects of crashes on stock markets.

Suggested Citation

  • Jacopo Rocchi & Enoch Yan Lok Tsui & David Saad, 2016. "Emerging interdependence between stock values during financial crashes," Papers 1611.02549, arXiv.org.
  • Handle: RePEc:arx:papers:1611.02549
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1611.02549
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chester Curme & Michele Tumminello & Rosario N. Mantegna & H. Eugene Stanley & Dror Y. Kenett, 2015. "Emergence of statistically validated financial intraday lead-lag relationships," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1375-1386, August.
    2. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 452-471.
    3. Pawe{l} Fiedor, 2014. "Causal Non-Linear Financial Networks," Papers 1407.5020, arXiv.org.
    4. M. Tumminello & T. Di Matteo & T. Aste & R. N. Mantegna, 2007. "Correlation based networks of equity returns sampled at different time horizons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 209-217, January.
    5. Th'arsis T. P. Souza & Tomaso Aste, 2016. "A nonlinear impact: evidences of causal effects of social media on market prices," Papers 1601.04535, arXiv.org, revised Mar 2016.
    6. Pawe{l} Fiedor, 2013. "Frequency Effects on Predictability of Stock Returns," Papers 1310.5540, arXiv.org, revised Nov 2013.
    7. Paweł Fiedor, 2014. "Information-theoretic approach to lead-lag effect on financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(8), pages 1-9, August.
    8. Gualdi, Stanislao & Tarzia, Marco & Zamponi, Francesco & Bouchaud, Jean-Philippe, 2015. "Tipping points in macroeconomic agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 29-61.
    9. Didier Sornette & Guy Ouillon, "undated". "Dragon-kings: Mechanisms, statistical methods and empirical evidence," Working Papers ETH-RC-12-004, ETH Zurich, Chair of Systems Design.
    10. Daniel J. Fenn & Mason A. Porter & Stacy Williams & Mark McDonald & Neil F. Johnson & Nick S. Jones, 2010. "Temporal Evolution of Financial Market Correlations," Papers 1011.3225, arXiv.org, revised May 2011.
    11. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.
    12. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacopo Rocchi & Enoch Yan Lok Tsui & David Saad, 2017. "Emerging interdependence between stock values during financial crashes," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-15, May.
    2. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    3. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    4. Nava, Noemi & Di Matteo, T. & Aste, Tomaso, 2018. "Dynamic correlations at different time-scales with empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 534-544.
    5. Fiedor, Paweł, 2014. "Sector strength and efficiency on developed and emerging financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 180-188.
    6. Tao You & Paweł Fiedor & Artur Hołda, 2015. "Network Analysis of the Shanghai Stock Exchange Based on Partial Mutual Information," JRFM, MDPI, vol. 8(2), pages 1-19, June.
    7. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    8. A. Corcos & J-P Eckmann & A. Malaspinas & Y. Malevergne & D. Sornette, 2002. "Imitation and contrarian behaviour: hyperbolic bubbles, crashes and chaos," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 264-281.
    9. Pawel Dlotko & Simon Rudkin, 2019. "The Topology of Time Series: Improving Recession Forecasting from Yield Spreads," Working Papers 2019-02, Swansea University, School of Management.
    10. Didier Sornette & Ryan Woodard & Maxim Fedorovsky & Stefan Reimann & Hilary Woodard & Wei-Xing Zhou, 2009. "The Financial Bubble Experiment: advanced diagnostics and forecasts of bubble terminations," Papers 0911.0454, arXiv.org, revised May 2010.
    11. Riccardo Rebonato & Valerio Gaspari, 2006. "Analysis of drawdowns and drawups in the US$ interest-rate market," Quantitative Finance, Taylor & Francis Journals, vol. 6(4), pages 297-326.
    12. Johansen, Anders, 2003. "Characterization of large price variations in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 157-166.
    13. Zhou, Wei-Xing & Sornette, Didier, 2003. "2000–2003 real estate bubble in the UK but not in the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 249-263.
    14. Maximilian Brauers & Matthias Thomas & Joachim Zietz, 2014. "Are There Rational Bubbles in REITs? New Evidence from a Complex Systems Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 49(2), pages 165-184, August.
    15. Irena Vodenska & Alexander P. Becker & Di Zhou & Dror Y. Kenett & H. Eugene Stanley & Shlomo Havlin, 2016. "Community Analysis of Global Financial Markets," Risks, MDPI, vol. 4(2), pages 1-15, May.
    16. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    17. Brée, David S. & Joseph, Nathan Lael, 2013. "Testing for financial crashes using the Log Periodic Power Law model," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 287-297.
    18. Zhou, Wei-Xing & Sornette, Didier, 2003. "Evidence of a worldwide stock market log-periodic anti-bubble since mid-2000," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(3), pages 543-583.
    19. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    20. Didier Sornette & Wei-Xing Zhou, 2005. "Non-parametric determination of real-time lag structure between two time series: the 'optimal thermal causal path' method," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 577-591.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1611.02549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.