IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1904.09240.html
   My bibliography  Save this paper

ADOL - Markovian approximation of rough lognormal model

Author

Listed:
  • Peter Carr
  • Andrey Itkin

Abstract

In this paper we apply Markovian approximation of the fractional Brownian motion (BM), known as the Dobric-Ojeda (DO) process, to the fractional stochastic volatility model where the instantaneous variance is modelled by a lognormal process with drift and fractional diffusion. Since the DO process is a semi-martingale, it can be represented as an \Ito diffusion. It turns out that in this framework the process for the spot price $S_t$ is a geometric BM with stochastic instantaneous volatility $\sigma_t$, the process for $\sigma_t$ is also a geometric BM with stochastic speed of mean reversion and time-dependent colatility of volatility, and the supplementary process $\calV_t$ is the Ornstein-Uhlenbeck process with time-dependent coefficients, and is also a function of the Hurst exponent. We also introduce an adjusted DO process which provides a uniformly good approximation of the fractional BM for all Hurst exponents $H \in [0,1]$ but requires a complex measure. Finally, the characteristic function (CF) of $\log S_t$ in our model can be found in closed form by using asymptotic expansion. Therefore, pricing options and variance swaps (by using a forward CF) can be done via FFT, which is much easier than in rough volatility models.

Suggested Citation

  • Peter Carr & Andrey Itkin, 2019. "ADOL - Markovian approximation of rough lognormal model," Papers 1904.09240, arXiv.org.
  • Handle: RePEc:arx:papers:1904.09240
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1904.09240
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    2. Bernard Wong & C. C. Heyde, 2006. "On changes of measure in stochastic volatility models," International Journal of Stochastic Analysis, Hindawi, vol. 2006, pages 1-13, December.
    3. Omar El Euch & Mathieu Rosenbaum, 2016. "The characteristic function of rough Heston models," Papers 1609.02108, arXiv.org.
    4. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    5. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2014. "Volatility is rough," Papers 1410.3394, arXiv.org.
    6. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    7. Monika Bi & Marcos Escobar & Barbara Goetz & Rudi Zagst, 2016. "Principal component models with stochastic mean‐reverting levels. Pricing and covariance surface improvements," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 32(5), pages 585-606, September.
    8. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2010. "Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns, and Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3141-3189, August.
    9. Daniel Conus & Mackenzie Wildman, 2016. "A Gaussian Markov alternative to fractional Brownian motion for pricing financial derivatives," Papers 1608.03428, arXiv.org.
    10. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    11. Andrey Itkin & Peter Carr, 2010. "Pricing swaps and options on quadratic variation under stochastic time change models—discrete observations case," Review of Derivatives Research, Springer, vol. 13(2), pages 141-176, July.
    12. Philipp Harms, 2019. "Strong convergence rates for Markovian representations of fractional processes," Papers 1902.01471, arXiv.org, revised Aug 2020.
    13. Giulia Livieri & Saad Mouti & Andrea Pallavicini & Mathieu Rosenbaum, 2018. "Rough volatility: Evidence from option prices," IISE Transactions, Taylor & Francis Journals, vol. 50(9), pages 767-776, September.
    14. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey Itkin, 2023. "The ATM implied skew in the ADO-Heston model," Papers 2309.15044, arXiv.org.
    2. Qinwen Zhu & Grégoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian Approximation of the Rough Bergomi Model for Monte Carlo Option Pricing," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
    3. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrey Itkin, 2023. "The ATM implied skew in the ADO-Heston model," Papers 2309.15044, arXiv.org.
    2. repec:qut:auncer:2013_02 is not listed on IDEAS
    3. A S Hurn & Kenenth A Lindsay & Andrew McClelland, 2013. "On the Efficacy of Fourier Series Approximations for Pricing European and Digital Options," NCER Working Paper Series 90, National Centre for Econometric Research.
    4. Jan Baldeaux & Alexander Badran, 2012. "Consistent Modeling of VIX and Equity Derivatives Using a 3/2 Plus Jumps Model," Research Paper Series 306, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Martin Tegnér & Rolf Poulsen, 2018. "Volatility Is Log-Normal—But Not for the Reason You Think," Risks, MDPI, vol. 6(2), pages 1-16, April.
    6. Jan Baldeaux & Alexander Badran, 2014. "Consistent Modelling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 299-312, September.
    7. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.
    8. Lian, Guanghua & Chiarella, Carl & Kalev, Petko S., 2014. "Volatility swaps and volatility options on discretely sampled realized variance," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 239-262.
    9. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    10. H. Peter Boswijk & Roger J. A. Laeven & Evgenii Vladimirov, 2022. "Estimating Option Pricing Models Using a Characteristic Function-Based Linear State Space Representation," Papers 2210.06217, arXiv.org.
    11. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    12. Bertram During & Christian Hendricks & James Miles, 2016. "Sparse grid high-order ADI scheme for option pricing in stochastic volatility models," Papers 1611.01379, arXiv.org.
    13. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.
    14. Zhigang Tong & Allen Liu, 2017. "Analytical pricing formulas for discretely sampled generalized variance swaps under stochastic time change," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-24, June.
    15. João Pedro Vidal Nunes & Tiago Ramalho Viegas Alcaria, 2016. "Valuation of forward start options under affine jump-diffusion models," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 727-747, May.
    16. Fang, Fang & Oosterlee, Kees, 2008. "Pricing Early-Exercise and Discrete Barrier Options by Fourier-Cosine Series Expansions," MPRA Paper 9248, University Library of Munich, Germany.
    17. Chen, Ding & Härkönen, Hannu J. & Newton, David P., 2014. "Advancing the universality of quadrature methods to any underlying process for option pricing," Journal of Financial Economics, Elsevier, vol. 114(3), pages 600-612.
    18. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Sojmark, 2017. "Functional central limit theorems for rough volatility," Papers 1711.03078, arXiv.org, revised Nov 2023.
    19. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    20. Christensen, Kim & Thyrsgaard, Martin & Veliyev, Bezirgen, 2019. "The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing," Journal of Econometrics, Elsevier, vol. 212(2), pages 556-583.
    21. Jan Baldeaux, 2011. "Exact Simulation of the 3/2 Model," Papers 1105.3297, arXiv.org, revised May 2011.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1904.09240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.