IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1606.03325.html
   My bibliography  Save this paper

Model-free portfolio theory and its functional master formula

Author

Listed:
  • Alexander Schied
  • Leo Speiser
  • Iryna Voloshchenko

Abstract

We use pathwise It\^o calculus to prove two strictly pathwise versions of the master formula in Fernholz' stochastic portfolio theory. Our first version is set within the framework of F\"ollmer's pathwise It\^o calculus and works for portfolios generated from functions that may depend on the current states of the market portfolio and an additional path of finite variation. The second version is formulated within the functional pathwise It\^o calculus of Dupire (2009) and Cont \& Fourni\'e (2010) and allows for portfolio-generating functionals that may depend additionally on the entire path of the market portfolio. Our results are illustrated by several examples and shown to work on empirical market data.

Suggested Citation

  • Alexander Schied & Leo Speiser & Iryna Voloshchenko, 2016. "Model-free portfolio theory and its functional master formula," Papers 1606.03325, arXiv.org, revised May 2018.
  • Handle: RePEc:arx:papers:1606.03325
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1606.03325
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Fernholz & Ioannis Karatzas & Constantinos Kardaras, 2005. "Diversity and relative arbitrage in equity markets," Finance and Stochastics, Springer, vol. 9(1), pages 1-27, January.
    2. Winslow Strong, 2012. "Generalizations of Functionally Generated Portfolios with Applications to Statistical Arbitrage," Papers 1212.1877, arXiv.org, revised Oct 2013.
    3. Alexander Cox & Jan Obłój, 2011. "Robust pricing and hedging of double no-touch options," Finance and Stochastics, Springer, vol. 15(3), pages 573-605, September.
    4. Ioannis Karatzas & Johannes Ruf, 2016. "Trading Strategies Generated by Lyapunov Functions," Papers 1603.08245, arXiv.org.
    5. Mark Davis & Jan Obłój & Vimal Raval, 2014. "Arbitrage Bounds For Prices Of Weighted Variance Swaps," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 821-854, October.
    6. Alexander Vervuurt & Ioannis Karatzas, 2015. "Diversity-weighted portfolios with negative parameter," Annals of Finance, Springer, vol. 11(3), pages 411-432, November.
    7. Alexander Vervuurt & Ioannis Karatzas, 2015. "Diversity-Weighted Portfolios with Negative Parameter," Papers 1504.01026, arXiv.org, revised Jul 2015.
    8. Fernholz, Robert, 1999. "On the diversity of equity markets," Journal of Mathematical Economics, Elsevier, vol. 31(3), pages 393-417, April.
    9. Bick, Avi & Willinger, Walter, 1994. "Dynamic spanning without probabilities," Stochastic Processes and their Applications, Elsevier, vol. 50(2), pages 349-374, April.
    10. Ting-Kam Wong, 2015. "Optimization of relative arbitrage," Annals of Finance, Springer, vol. 11(3), pages 345-382, November.
    11. Robert Fernholz, 1999. "Portfolio Generating Functions," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar, chapter 15, pages 344-367, World Scientific Publishing Co. Pte. Ltd..
    12. Robert Fernholz & Ioannis Karatzas, 2005. "Relative arbitrage in volatility-stabilized markets," Annals of Finance, Springer, vol. 1(2), pages 149-177, November.
    13. Soumik Pal & Ting-Kam Leonard Wong, 2013. "Energy, entropy, and arbitrage," Papers 1308.5376, arXiv.org, revised Jan 2016.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erhan Bayraktar & Donghan Kim & Abhishek Tilva, 2024. "Quantifying dimensional change in stochastic portfolio theory," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 977-1021, July.
    2. Kangjianan Xie, 2020. "Leakage of rank-dependent functionally generated trading strategies," Annals of Finance, Springer, vol. 16(4), pages 573-591, December.
    3. Johannes Ruf & Kangjianan Xie, 2019. "The impact of proportional transaction costs on systematically generated portfolios," Papers 1904.08925, arXiv.org.
    4. Ioannis Karatzas & Johannes Ruf, 2017. "Trading strategies generated by Lyapunov functions," Finance and Stochastics, Springer, vol. 21(3), pages 753-787, July.
    5. Andrew L. Allan & Christa Cuchiero & Chong Liu & David J. Promel, 2021. "Model-free Portfolio Theory: A Rough Path Approach," Papers 2109.01843, arXiv.org, revised Oct 2022.
    6. Ruf, Johannes & Xie, Kangjianan, 2020. "Impact of proportional transaction costs on systematically generated portfolios," LSE Research Online Documents on Economics 104696, London School of Economics and Political Science, LSE Library.
    7. Michael Heinrich Baumann, 2022. "Beating the market? A mathematical puzzle for market efficiency," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 279-325, June.
    8. Patrick Mijatovic, 2021. "Beating the Market with Generalized Generating Portfolios," Papers 2101.07084, arXiv.org.
    9. Ruf, Johannes & Xie, Kangjianan, 2019. "Generalized Lyapunov functions and functionally generated trading strategies," LSE Research Online Documents on Economics 100023, London School of Economics and Political Science, LSE Library.
    10. repec:ehl:lserod:102424 is not listed on IDEAS
    11. Donghan Kim, 2022. "Market-to-book Ratio in Stochastic Portfolio Theory," Papers 2206.03742, arXiv.org.
    12. Donghan Kim, 2023. "Market-to-book ratio in stochastic portfolio theory," Finance and Stochastics, Springer, vol. 27(2), pages 401-434, April.
    13. Robert Fernholz, 2016. "A new decomposition of portfolio return," Papers 1606.05877, arXiv.org.
    14. Christa Cuchiero & Janka Moller, 2023. "Signature Methods in Stochastic Portfolio Theory," Papers 2310.02322, arXiv.org, revised Oct 2024.
    15. Johannes Ruf & Kangjianan Xie, 2018. "Generalised Lyapunov Functions and Functionally Generated Trading Strategies," Papers 1801.07817, arXiv.org.
    16. Ioannis Karatzas & Donghan Kim, 2020. "Trading strategies generated pathwise by functions of market weights," Finance and Stochastics, Springer, vol. 24(2), pages 423-463, April.
    17. Andrew L. Allan & Chong Liu & David J. Promel, 2021. "A C\`adl\`ag Rough Path Foundation for Robust Finance," Papers 2109.04225, arXiv.org, revised May 2023.
    18. Christa Cuchiero & Walter Schachermayer & Ting-Kam Leonard Wong, 2016. "Cover's universal portfolio, stochastic portfolio theory and the numeraire portfolio," Papers 1611.09631, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ting-Kam Leonard Wong, 2017. "On portfolios generated by optimal transport," Papers 1709.03169, arXiv.org, revised Sep 2017.
    2. Soumik Pal & Ting-Kam Leonard Wong, 2016. "Exponentially concave functions and a new information geometry," Papers 1605.05819, arXiv.org, revised May 2017.
    3. Ioannis Karatzas & Johannes Ruf, 2016. "Trading Strategies Generated by Lyapunov Functions," Papers 1603.08245, arXiv.org.
    4. Yves-Laurent Kom Samo & Alexander Vervuurt, 2016. "Stochastic Portfolio Theory: A Machine Learning Perspective," Papers 1605.02654, arXiv.org.
    5. Alexander Vervuurt, 2015. "Topics in Stochastic Portfolio Theory," Papers 1504.02988, arXiv.org.
    6. Ioannis Karatzas & Johannes Ruf, 2017. "Trading strategies generated by Lyapunov functions," Finance and Stochastics, Springer, vol. 21(3), pages 753-787, July.
    7. Christa Cuchiero, 2017. "Polynomial processes in stochastic portfolio theory," Papers 1705.03647, arXiv.org.
    8. Patrick Mijatovic, 2021. "Beating the Market with Generalized Generating Portfolios," Papers 2101.07084, arXiv.org.
    9. Soumik Pal & Ting-Kam Leonard Wong, 2014. "The geometry of relative arbitrage," Papers 1402.3720, arXiv.org, revised Jul 2015.
    10. Steven Campbell & Qien Song & Ting-Kam Leonard Wong, 2024. "Macroscopic properties of equity markets: stylized facts and portfolio performance," Papers 2409.10859, arXiv.org, revised Oct 2024.
    11. E. Robert Fernholz & Ioannis Karatzas & Johannes Ruf, 2016. "Volatility and Arbitrage," Papers 1608.06121, arXiv.org.
    12. Ting-Kam Leonard Wong, 2014. "Optimization of relative arbitrage," Papers 1407.8300, arXiv.org, revised Nov 2014.
    13. Winslow Strong, 2012. "Generalizations of Functionally Generated Portfolios with Applications to Statistical Arbitrage," Papers 1212.1877, arXiv.org, revised Oct 2013.
    14. Ricardo T. Fernholz & Robert Fernholz, 2022. "Permutation-weighted portfolios and the efficiency of commodity futures markets," Annals of Finance, Springer, vol. 18(1), pages 81-108, March.
    15. Donghan Kim, 2022. "Market-to-book Ratio in Stochastic Portfolio Theory," Papers 2206.03742, arXiv.org.
    16. Winslow Strong & Jean-Pierre Fouque, 2011. "Diversity and arbitrage in a regulatory breakup model," Annals of Finance, Springer, vol. 7(3), pages 349-374, August.
    17. Soumik Pal, 2016. "Exponentially concave functions and high dimensional stochastic portfolio theory," Papers 1603.01865, arXiv.org, revised Mar 2016.
    18. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2020. "Deep Learning for Portfolio Optimization," Papers 2005.13665, arXiv.org, revised Jan 2021.
    19. Donghan Kim, 2019. "Open Markets," Papers 1912.13110, arXiv.org.
    20. Alexander Vervuurt & Ioannis Karatzas, 2015. "Diversity-weighted portfolios with negative parameter," Annals of Finance, Springer, vol. 11(3), pages 411-432, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1606.03325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.