IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1308.5376.html
   My bibliography  Save this paper

Energy, entropy, and arbitrage

Author

Listed:
  • Soumik Pal
  • Ting-Kam Leonard Wong

Abstract

We introduce a pathwise approach to analyze the relative performance of an equity portfolio with respect to a benchmark market portfolio. In this energy-entropy framework, the relative performance is decomposed into three components: a volatility term, a relative entropy term measuring the distance between the portfolio weights and the market capital distribution, and another entropy term that can be controlled by the investor by adopting a suitable rebalancing strategy. This framework leads to a class of portfolio strategies that allows one to outperform, in the long run, a market that is diverse and sufficiently volatile in the sense of stochastic portfolio theory. The framework is illustrated with several empirical examples.

Suggested Citation

  • Soumik Pal & Ting-Kam Leonard Wong, 2013. "Energy, entropy, and arbitrage," Papers 1308.5376, arXiv.org, revised Jan 2016.
  • Handle: RePEc:arx:papers:1308.5376
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1308.5376
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Fernholz & Ioannis Karatzas & Constantinos Kardaras, 2005. "Diversity and relative arbitrage in equity markets," Finance and Stochastics, Springer, vol. 9(1), pages 1-27, January.
    2. Daniel Kuhn & David Luenberger, 2010. "Analysis of the rebalancing frequency in log-optimal portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 221-234.
    3. Michael A. H. Dempster & Igor V. Evstigneev & Klaus R. Schenk-hoppe, 2007. "Volatility-induced financial growth," Quantitative Finance, Taylor & Francis Journals, vol. 7(2), pages 151-160.
    4. Fernholz, Robert & Shay, Brian, 1982. "Stochastic Portfolio Theory and Stock Market Equilibrium," Journal of Finance, American Finance Association, vol. 37(2), pages 615-624, May.
    5. Robert Fernholz & Ioannis Karatzas, 2005. "Relative arbitrage in volatility-stabilized markets," Annals of Finance, Springer, vol. 1(2), pages 149-177, November.
    6. Eckhard Platen & Renata Rendek, 2012. "Approximating the numéraire portfolio by naive diversification," Journal of Asset Management, Palgrave Macmillan, vol. 13(1), pages 34-50, February.
    7. Thomas M. Cover, 1991. "Universal Portfolios," Mathematical Finance, Wiley Blackwell, vol. 1(1), pages 1-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Schied & Leo Speiser & Iryna Voloshchenko, 2016. "Model-free portfolio theory and its functional master formula," Papers 1606.03325, arXiv.org, revised May 2018.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Vervuurt, 2015. "Topics in Stochastic Portfolio Theory," Papers 1504.02988, arXiv.org.
    2. Christa Cuchiero, 2017. "Polynomial processes in stochastic portfolio theory," Papers 1705.03647, arXiv.org.
    3. Keith Cuthbertson & Simon Hayley & Nick Motson & Dirk Nitzsche, 2016. "What Does Rebalancing Really Achieve?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 21(3), pages 224-240, July.
    4. Vassilios Papathanakos, 2016. "Portfolio Optimization in the Stochastic Portfolio Theory Framework," Papers 1601.07628, arXiv.org.
    5. Steven Campbell & Qien Song & Ting-Kam Leonard Wong, 2024. "Macroscopic properties of equity markets: stylized facts and portfolio performance," Papers 2409.10859, arXiv.org, revised Oct 2024.
    6. Michael Heinrich Baumann, 2022. "Beating the market? A mathematical puzzle for market efficiency," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 279-325, June.
    7. Eckhard Platen & Renata Rendek, 2009. "Simulation of Diversified Portfolios in a Continuous Financial Market," Research Paper Series 264, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Jan Hendrik Witte, 2015. "Volatility Harvesting: Extracting Return from Randomness," Papers 1508.05241, arXiv.org, revised Nov 2015.
    9. Sergei Belkov & Igor V. Evstigneev & Thorsten Hens, 2020. "An evolutionary finance model with a risk-free asset," Annals of Finance, Springer, vol. 16(4), pages 593-607, December.
    10. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 23, July-Dece.
    11. Alexander Schied & Leo Speiser & Iryna Voloshchenko, 2016. "Model-free portfolio theory and its functional master formula," Papers 1606.03325, arXiv.org, revised May 2018.
    12. Soumik Pal, 2016. "Exponentially concave functions and high dimensional stochastic portfolio theory," Papers 1603.01865, arXiv.org, revised Mar 2016.
    13. Aleksandar Mijatović & Mikhail Urusov, 2012. "Deterministic criteria for the absence of arbitrage in one-dimensional diffusion models," Finance and Stochastics, Springer, vol. 16(2), pages 225-247, April.
    14. Cuchiero, Christa, 2019. "Polynomial processes in stochastic portfolio theory," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1829-1872.
    15. Ting-Kam Leonard Wong, 2017. "On portfolios generated by optimal transport," Papers 1709.03169, arXiv.org, revised Sep 2017.
    16. Soumik Pal & Philip Protter, 2007. "Analysis of continuous strict local martingales via h-transforms," Papers 0711.1136, arXiv.org, revised Jun 2010.
    17. Igor Evstigneev & Dhruv Kapoor, 2009. "Arbitrage in stationary markets," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 32(1), pages 5-12, May.
    18. Eckhard Platen & David Taylor, 2016. "Loading Pricing of Catastrophe Bonds and Other Long-Dated, Insurance-Type Contracts," Research Paper Series 379, Quantitative Finance Research Centre, University of Technology, Sydney.
    19. Andrey Sarantsev, 2014. "On a class of diverse market models," Annals of Finance, Springer, vol. 10(2), pages 291-314, May.
    20. Soumik Pal & Ting-Kam Leonard Wong, 2014. "The geometry of relative arbitrage," Papers 1402.3720, arXiv.org, revised Jul 2015.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1308.5376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.