IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1602.03402.html
   My bibliography  Save this paper

Pricing options on forwards in energy markets: the role of mean reversion's speed

Author

Listed:
  • Maren Diane Schmeck

Abstract

Consider the problem of pricing options on forwards in energy markets, when spot prices follow a geometric multi-factor model in which several rates of mean reversion appear. In this paper we investigate the role played by slow mean reversion when pricing and hedging options. In particular, we determine both upper and lower bounds for the error one makes neglecting low rates of mean reversion in the spot price dynamics.

Suggested Citation

  • Maren Diane Schmeck, 2016. "Pricing options on forwards in energy markets: the role of mean reversion's speed," Papers 1602.03402, arXiv.org.
  • Handle: RePEc:arx:papers:1602.03402
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1602.03402
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    2. Thilo Meyer-Brandis & Peter Tankov, 2008. "Multi-Factor Jump-Diffusion Models Of Electricity Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(05), pages 503-528.
    3. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    4. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    5. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    6. Martin Barlow & Yuri Gusev & Manpo Lai, 2004. "Calibration Of Multifactor Models In Electricity Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 101-120.
    7. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piccirilli, Marco & Schmeck, Maren Diane & Vargiolu, Tiziano, 2021. "Capturing the power options smile by an additive two-factor model for overlapping futures prices," Energy Economics, Elsevier, vol. 95(C).
    2. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    3. Borovkova, Svetlana & Schmeck, Maren Diane, 2017. "Electricity price modeling with stochastic time change," Energy Economics, Elsevier, vol. 63(C), pages 51-65.
    4. Kemper, Annika & Schmeck, Maren Diane & Kh.Balci, Anna, 2022. "The market price of risk for delivery periods: Pricing swaps and options in electricity markets," Energy Economics, Elsevier, vol. 113(C).
    5. Maren Diane Schmeck & Stefan Schwerin, 2021. "The Effect of Mean-Reverting Processes in the Pricing of Options in the Energy Market: An Arithmetic Approach," Risks, MDPI, vol. 9(5), pages 1-19, May.
    6. Kemper, Annika & Schmeck, Maren Diane & Khripunova Balci, Anna, 2020. "The Market Price of Risk for Delivery Periods: Pricing Swaps and Options in Electricity Markets," Center for Mathematical Economics Working Papers 635, Center for Mathematical Economics, Bielefeld University.
    7. Thomas Deschatre & Olivier F'eron & Pierre Gruet, 2021. "A survey of electricity spot and futures price models for risk management applications," Papers 2103.16918, arXiv.org, revised Jul 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maren Diane Schmeck, 2016. "Pricing Options On Forwards In Energy Markets: The Role Of Mean Reversion'S Speed," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-26, December.
    2. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    3. Hinderks, W.J. & Wagner, A., 2020. "Factor models in the German electricity market: Stylized facts, seasonality, and calibration," Energy Economics, Elsevier, vol. 85(C).
    4. Gonzalez, Jhonny & Moriarty, John & Palczewski, Jan, 2017. "Bayesian calibration and number of jump components in electricity spot price models," Energy Economics, Elsevier, vol. 65(C), pages 375-388.
    5. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.
    6. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    7. Karol Binkowski & Peilun He & Nino Kordzakhia & Pavel Shevchenko, 2021. "On the Parameter Estimation in the Schwartz-Smiths Two-Factor Model," Papers 2108.01881, arXiv.org.
    8. Richter, Martin & Sørensen, Carsten, 2002. "Stochastic Volatility and Seasonality in Commodity Futures and Options: The Case of Soybeans," Working Papers 2002-4, Copenhagen Business School, Department of Finance.
    9. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    10. Ke Tang, 2012. "Time-varying long-run mean of commodity prices and the modeling of futures term structures," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 781-790, April.
    11. Maren Diane Schmeck & Stefan Schwerin, 2021. "The Effect of Mean-Reverting Processes in the Pricing of Options in the Energy Market: An Arithmetic Approach," Risks, MDPI, vol. 9(5), pages 1-19, May.
    12. Ladokhin, Sergiy & Borovkova, Svetlana, 2021. "Three-factor commodity forward curve model and its joint P and Q dynamics," Energy Economics, Elsevier, vol. 101(C).
    13. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    14. Paschke, Raphael & Prokopczuk, Marcel, 2007. "Integrating Multiple Commodities in a Model of Stochastic Price Dynamics," MPRA Paper 5412, University Library of Munich, Germany.
    15. Chevallier, Julien & Ielpo, Florian, 2017. "Investigating the leverage effect in commodity markets with a recursive estimation approach," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 763-778.
    16. Bennedsen, Mikkel, 2017. "A rough multi-factor model of electricity spot prices," Energy Economics, Elsevier, vol. 63(C), pages 301-313.
    17. Latini, Luca & Piccirilli, Marco & Vargiolu, Tiziano, 2019. "Mean-reverting no-arbitrage additive models for forward curves in energy markets," Energy Economics, Elsevier, vol. 79(C), pages 157-170.
    18. Ernstsen, Rune Ramsdal & Boomsma, Trine Krogh, 2018. "Valuation of power plants," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1153-1174.
    19. Christian Laudag'e & Florian Aichinger & Sascha Desmettre, 2023. "A Comparative Study of Factor Models for Different Periods of the Electricity Spot Price Market," Papers 2306.07731, arXiv.org, revised Apr 2024.
    20. Power, Gabriel J. & Eaves, James & Turvey, Calum & Vedenov, Dmitry, 2017. "Catching the curl: Wavelet thresholding improves forward curve modelling," Economic Modelling, Elsevier, vol. 64(C), pages 312-321.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1602.03402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.