IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1509.03264.html
   My bibliography  Save this paper

Can You hear the Shape of a Market? Geometric Arbitrage and Spectral Theory

Author

Listed:
  • Simone Farinelli
  • Hideyuki Takada

Abstract

Geometric Arbitrage Theory reformulates a generic asset model possibly allowing for arbitrage by packaging all assets and their forwards dynamics into a stochastic principal fibre bundle, with a connection whose parallel transport encodes discounting and portfolio rebalancing, and whose curvature measures, in this geometric language, the 'instantaneous arbitrage capability' generated by the market itself. The cashflow bundle is the vector bundle associated to this stochastic principal fibre bundle for the natural choice of the vector space fibre. The cashflow bundle carries a stochastic covariant differentiation induced by the connection on the principal fibre bundle. The link between arbitrage theory and spectral theory of the connection Laplacian on the vector bundle is given by the zero eigenspace resulting in a parametrization of all risk neutral measures equivalent to the statistical one. This indicates that a market satisfies the (NFLVR) condition if and only if $0$ is in the discrete spectrum of the connection Laplacian on the cash flow bundle or of the Dirac Laplacian of the twisted cash flow bundle with the exterior algebra bundle. We apply this result by extending Jarrow-Protter-Shimbo theory of asset bubbles for complete arbitrage free markets to markets not satisfying the (NFLVR). Moreover, by means of the Atiyah-Singer index theorem, we prove that the Euler characteristic of the asset nominal space is a topological obstruction to the the (NFLVR) condition, and, by means of the Bochner-Weitzenb\"ock formula, the non vanishing of the homology group of the cash flow bundle is revealed to be a topological obstruction to (NFLVR), too. Asset bubbles are defined, classified and decomposed for markets allowing arbitrage.

Suggested Citation

  • Simone Farinelli & Hideyuki Takada, 2015. "Can You hear the Shape of a Market? Geometric Arbitrage and Spectral Theory," Papers 1509.03264, arXiv.org, revised Sep 2021.
  • Handle: RePEc:arx:papers:1509.03264
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1509.03264
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomas Björk & Henrik Hult, 2005. "A note on Wick products and the fractional Black-Scholes model," Finance and Stochastics, Springer, vol. 9(2), pages 197-209, April.
    2. Kirill Ilinski, 1997. "Physics of Finance," Papers hep-th/9710148, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Farinelli & Hideyuki Takada, 2022. "The Black–Scholes equation in the presence of arbitrage," Quantitative Finance, Taylor & Francis Journals, vol. 22(12), pages 2155-2170, December.
    2. Simone Farinelli & Hideyuki Takada, 2019. "When Risks and Uncertainties Collide: Mathematical Finance for Arbitrage Markets in a Quantum Mechanical View," Papers 1906.07164, arXiv.org, revised Jan 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone Farinelli & Hideyuki Takada, 2014. "Credit Bubbles in Arbitrage Markets: The Geometric Arbitrage Approach to Credit Risk," Papers 1406.6805, arXiv.org, revised Jul 2021.
    2. Simone Farinelli & Hideyuki Takada, 2019. "The Black-Scholes Equation in Presence of Arbitrage," Papers 1904.11565, arXiv.org, revised Oct 2021.
    3. Zhang, Chao & Huang, Lu, 2010. "A quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5769-5775.
    4. Emmanuel Frenod & Jean-Philippe Gouigoux & Landry Tour'e, 2013. "Modeling and Solving Alternative Financial Solutions Seeking," Papers 1306.2820, arXiv.org, revised Dec 2013.
    5. Liviu-Adrian Cotfas, 2012. "A quantum mechanical model for the rate of return," Papers 1211.1938, arXiv.org.
    6. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    7. Rostek, Stefan & Schöbel, Rainer, 2006. "Risk preference based option pricing in a fractional Brownian market," Tübinger Diskussionsbeiträge 299, University of Tübingen, School of Business and Economics.
    8. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    9. Dupoyet, B. & Fiebig, H.R. & Musgrove, D.P., 2010. "Gauge invariant lattice quantum field theory: Implications for statistical properties of high frequency financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 107-116.
    10. Choi, Jaehyung, 2012. "Spontaneous symmetry breaking of arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3206-3218.
    11. Wang, Xiao-Tian & Wu, Min & Zhou, Ze-Min & Jing, Wei-Shu, 2012. "Pricing European option with transaction costs under the fractional long memory stochastic volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1469-1480.
    12. Min Wang & Jun Wang, 2017. "Multiscale volatility duration characteristics on financial multi-continuum percolation dynamics," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 28(05), pages 1-21, May.
    13. Tapiero, Charles S. & Vallois, Pierre, 2018. "Fractional Randomness and the Brownian Bridge," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 835-843.
    14. Mikko S. Pakkanen & Jani Lukkarinen, 2016. "Arbitrage without borrowing or short selling?," CREATES Research Papers 2016-13, Department of Economics and Business Economics, Aarhus University.
    15. Emmanuel Frenod & Jean-Philippe Gouigoux & Landry Touré, 2015. "Modeling and Solving Alternative Financial Solutions Seeking," Post-Print hal-00833327, HAL.
    16. Axel A. Araneda, 2019. "The fractional and mixed-fractional CEV model," Papers 1903.05747, arXiv.org, revised Jun 2019.
    17. Alberto Ohashi, 2008. "Fractional term structure models: No-arbitrage and consistency," Papers 0802.1288, arXiv.org, revised Sep 2009.
    18. Høg, Espen P. & Frederiksen, Per H., 2006. "The Fractional Ornstein-Uhlenbeck Process: Term Structure Theory and Application," Finance Research Group Working Papers F-2006-01, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    19. Di Xiao & Jun Wang & Hongli Niu, 2016. "Volatility Analysis of Financial Agent-Based Market Dynamics from Stochastic Contact System," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 607-625, December.
    20. Jana, T.K. & Roy, P., 2011. "Supersymmetry in option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2350-2355.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1509.03264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.