IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.07164.html
   My bibliography  Save this paper

When Risks and Uncertainties Collide: Mathematical Finance for Arbitrage Markets in a Quantum Mechanical View

Author

Listed:
  • Simone Farinelli
  • Hideyuki Takada

Abstract

Geometric arbitrage theory reformulates a generic asset model possibly allowing for arbitrage by packaging all asset and their forward dynamics into a stochastic principal fibre bundle, with a connection whose parallel transport encodes discounting and portfolio rebalancing, and whose curvature measures, in this geometric language, the instantaneous arbitrage capability generated by the market itself. The asset and market portfolio dynamics have a quantum mechanical description, which is constructed by quantizing the deterministic version of the stochastic Lagrangian system describing a market allowing for arbitrage. Results, obtained by solving the Schroedinger equation, coincide with those obtained by solving the stochastic Euler Lagrange equations derived by a variational principle and providing therefore consistency.

Suggested Citation

  • Simone Farinelli & Hideyuki Takada, 2019. "When Risks and Uncertainties Collide: Mathematical Finance for Arbitrage Markets in a Quantum Mechanical View," Papers 1906.07164, arXiv.org, revised Jan 2021.
  • Handle: RePEc:arx:papers:1906.07164
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.07164
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simone Farinelli & Hideyuki Takada, 2015. "Can You hear the Shape of a Market? Geometric Arbitrage and Spectral Theory," Papers 1509.03264, arXiv.org, revised Sep 2021.
    2. Kirill Ilinski, 1997. "Physics of Finance," Papers hep-th/9710148, arXiv.org.
    3. Simone Farinelli, 2009. "Geometric Arbitrage Theory and Market Dynamics Reloaded," Papers 0910.1671, arXiv.org, revised Jul 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone Farinelli & Hideyuki Takada, 2022. "The Black–Scholes equation in the presence of arbitrage," Quantitative Finance, Taylor & Francis Journals, vol. 22(12), pages 2155-2170, December.
    2. P. Liebrich, 2019. "A Relation between Short-Term and Long-Term Arbitrage," Papers 1909.00570, arXiv.org.
    3. Wanxiao Tang & Jun Zhao & Peibiao Zhao, 2019. "Geometric No-Arbitrage Analysis in the Dynamic Financial Market with Transaction Costs," JRFM, MDPI, vol. 12(1), pages 1-17, February.
    4. Simone Farinelli & Hideyuki Takada, 2019. "The Black-Scholes Equation in Presence of Arbitrage," Papers 1904.11565, arXiv.org, revised Oct 2021.
    5. Zhang, Chao & Huang, Lu, 2010. "A quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5769-5775.
    6. Emmanuel Frenod & Jean-Philippe Gouigoux & Landry Tour'e, 2013. "Modeling and Solving Alternative Financial Solutions Seeking," Papers 1306.2820, arXiv.org, revised Dec 2013.
    7. Liviu-Adrian Cotfas, 2012. "A quantum mechanical model for the rate of return," Papers 1211.1938, arXiv.org.
    8. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    9. Dupoyet, B. & Fiebig, H.R. & Musgrove, D.P., 2010. "Gauge invariant lattice quantum field theory: Implications for statistical properties of high frequency financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 107-116.
    10. Choi, Jaehyung, 2012. "Spontaneous symmetry breaking of arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3206-3218.
    11. Min Wang & Jun Wang, 2017. "Multiscale volatility duration characteristics on financial multi-continuum percolation dynamics," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 28(05), pages 1-21, May.
    12. Emmanuel Frenod & Jean-Philippe Gouigoux & Landry Touré, 2015. "Modeling and Solving Alternative Financial Solutions Seeking," Post-Print hal-00833327, HAL.
    13. Di Xiao & Jun Wang & Hongli Niu, 2016. "Volatility Analysis of Financial Agent-Based Market Dynamics from Stochastic Contact System," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 607-625, December.
    14. Jana, T.K. & Roy, P., 2011. "Supersymmetry in option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2350-2355.
    15. Emmanuel Haven, 2008. "Private Information and the ‘Information Function’: A Survey of Possible Uses," Theory and Decision, Springer, vol. 64(2), pages 193-228, March.
    16. Dupoyet, B. & Fiebig, H.R. & Musgrove, D.P., 2012. "Arbitrage-free self-organizing markets with GARCH properties: Generating them in the lab with a lattice model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4350-4363.
    17. Liu, Haijun & Wang, Longfei, 2018. "The price momentum of stock in distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 2336-2344.
    18. Giovanni Paolinelli & Gianni Arioli, 2018. "A path integral based model for stocks and order dynamics," Papers 1803.07904, arXiv.org.
    19. Haven, Emmanuel, 2008. "Elementary Quantum Mechanical Principles and Social Science: Is There a Connection?," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 5(1), pages 41-58, March.
    20. Cornelis A. Los, 2004. "Measuring Financial Cash Flow and Term Structure Dynamics," Finance 0409046, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.07164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.