IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2209.09656.html
   My bibliography  Save this paper

Nonparametric estimates of option prices via Hermite basis functions

Author

Listed:
  • Carlo Marinelli
  • Stefano d'Addona

Abstract

We consider approximate pricing formulas for European options based on approximating the logarithmic return's density of the underlying by a linear combination of rescaled Hermite polynomials. The resulting models, that can be seen as perturbations of the classical Black-Scholes one, are nonpararametric in the sense that the distribution of logarithmic returns at fixed times to maturity is only assumed to have a square-integrable density. We extensively investigate the empirical performance, defined in terms of out-of-sample relative pricing error, of this class of approximating models, depending on their order (that is, roughly speaking, the degree of the polynomial expansion) as well as on several ways to calibrate them to observed data. Empirical results suggest that such approximate pricing formulas, when compared with simple nonparametric estimates based on interpolation and extrapolation on the implied volatility curve, perform reasonably well only for options with strike price not too far apart from the strike prices of the observed sample.

Suggested Citation

  • Carlo Marinelli & Stefano d'Addona, 2022. "Nonparametric estimates of option prices via Hermite basis functions," Papers 2209.09656, arXiv.org, revised Aug 2023.
  • Handle: RePEc:arx:papers:2209.09656
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2209.09656
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    2. Marinelli, Carlo & d’Addona, Stefano, 2017. "Nonparametric estimates of pricing functionals," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 19-35.
    3. Xiu, Dacheng, 2014. "Hermite polynomial based expansion of European option prices," Journal of Econometrics, Elsevier, vol. 179(2), pages 158-177.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlo Marinelli, 2024. "On certain representations of pricing functionals," Annals of Finance, Springer, vol. 20(1), pages 91-127, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.
    2. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "A data-driven framework for consistent financial valuation and risk measurement," European Journal of Operational Research, Elsevier, vol. 289(1), pages 381-398.
    3. Andrea Barletta & Paolo Santucci de Magistris, 2018. "Analyzing the Risks Embedded in Option Prices with rndfittool," Risks, MDPI, vol. 6(2), pages 1-15, March.
    4. Andrea Barletta & Paolo Santucci de Magistris & Francesco Violante, 2016. "Retrieving Risk-Neutral Densities Embedded in VIX Options: a Non-Structural Approach," CREATES Research Papers 2016-20, Department of Economics and Business Economics, Aarhus University.
    5. Barletta, Andrea & Santucci de Magistris, Paolo & Violante, Francesco, 2019. "A non-structural investigation of VIX risk neutral density," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 1-20.
    6. Thomas Mazzoni, 2018. "Asymptotic Expansion of Risk-Neutral Pricing Density," IJFS, MDPI, vol. 6(1), pages 1-26, March.
    7. repec:oup:rapstu:v:7:y:2017:i:1:p:2-42. is not listed on IDEAS
    8. Carlo Marinelli & Stefano d’Addona, 2023. "Nonparametric estimates of option prices via Hermite basis functions," Annals of Finance, Springer, vol. 19(4), pages 477-522, December.
    9. Dalderop, Jeroen, 2020. "Nonparametric filtering of conditional state-price densities," Journal of Econometrics, Elsevier, vol. 214(2), pages 295-325.
    10. Barletta, Andrea & Santucci de Magistris, Paolo & Sloth, David, 2019. "It only takes a few moments to hedge options," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 251-269.
    11. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    12. Xiang Meng, 2019. "Dynamic Mean-Variance Portfolio Optimisation," Papers 1907.03093, arXiv.org.
    13. Ivanova, Vesela & Puigvert Gutiérrez, Josep Maria, 2014. "Interest rate forecasts, state price densities and risk premium from Euribor options," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 210-223.
    14. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    15. Marins, Jaqueline Terra Moura & Vicente, José Valentim Machado, 2017. "Do the central bank actions reduce interest rate volatility?," Economic Modelling, Elsevier, vol. 65(C), pages 129-137.
    16. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    17. John Armstrong & Teemu Pennanen & Udomsak Rakwongwan, 2018. "Pricing Index Options By Static Hedging Under Finite Liquidity," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-18, September.
    18. Barone-Adesi, Giovanni & Fusari, Nicola & Mira, Antonietta & Sala, Carlo, 2020. "Option market trading activity and the estimation of the pricing kernel: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 216(2), pages 430-449.
    19. Yang, Nian & Chen, Nan & Wan, Xiangwei, 2019. "A new delta expansion for multivariate diffusions via the Itô-Taylor expansion," Journal of Econometrics, Elsevier, vol. 209(2), pages 256-288.
    20. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, August.
    21. Petros Dellaportas & Aleksandar Mijatovi'c, 2014. "Arbitrage-free prediction of the implied volatility smile," Papers 1407.5528, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.09656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.