Recursive Partitioning for Heterogeneous Causal Effects
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2008.
"Nonparametric Tests for Treatment Effect Heterogeneity,"
The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 389-405, August.
- Crump, Richard K. & Hotz, V. Joseph & Imbens, Guido W. & Mitnik, Oscar A., 2006. "Nonparametric Tests for Treatment Effect Heterogeneity," IZA Discussion Papers 2091, Institute of Labor Economics (IZA).
- Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Nonparametric Tests for Treatment Effect Heterogeneity," NBER Technical Working Papers 0324, National Bureau of Economic Research, Inc.
- Mitnik, Oscar K. & Imbens, Guido & Hotz, V. Joseph & Crump, Richard K., 2008. "Nonparametric Tests for Treatment Effect Heterogeneity," Scholarly Articles 3039049, Harvard University Department of Economics.
- Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Nonparametric Tests for Treatment Effect Heterogeneity," Working Papers 0609, University of Miami, Department of Economics.
- Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003.
"Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score,"
Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
- Guido Imbens, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometric Society World Congress 2000 Contributed Papers 1166, Econometric Society.
- Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," NBER Technical Working Papers 0251, National Bureau of Economic Research, Inc.
- Lu Tian & Ash A. Alizadeh & Andrew J. Gentles & Robert Tibshirani, 2014. "A Simple Method for Estimating Interactions Between a Treatment and a Large Number of Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1517-1532, December.
- M. Rosenblum & M. J. van der Laan, 2011. "Optimizing randomized trial designs to distinguish which subpopulations benefit from treatment," Biometrika, Biometrika Trust, vol. 98(4), pages 845-860.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
- Vikas Ramachandra, 2018. "Deep Learning for Causal Inference," Papers 1803.00149, arXiv.org.
- Vikas Ramachandra, 2018. "Causal Inference for Survival Analysis," Papers 1803.08218, arXiv.org.
- Susan Athey & Guido Imbens, 2016. "The Econometrics of Randomized Experiments," Papers 1607.00698, arXiv.org.
- Nils Droste & Claudia Becker & Irene Ring & Rui Santos, 2018. "Decentralization Effects in Ecological Fiscal Transfers: A Bayesian Structural Time Series Analysis for Portugal," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(4), pages 1027-1051, December.
- Daniel Runfola & Ariel BenYishay & Jeffery Tanner & Graeme Buchanan & Jyoteshwar Nagol & Matthias Leu & Seth Goodman & Rachel Trichler & Robert Marty, 2017. "A Top-Down Approach to Estimating Spatially Heterogeneous Impacts of Development Aid on Vegetative Carbon Sequestration," Sustainability, MDPI, vol. 9(3), pages 1-9, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Susan Athey & Guido Imbens, 2016. "The Econometrics of Randomized Experiments," Papers 1607.00698, arXiv.org.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- Clément de Chaisemartin & Luc Behaghel, 2020.
"Estimating the Effect of Treatments Allocated by Randomized Waiting Lists,"
Econometrica, Econometric Society, vol. 88(4), pages 1453-1477, July.
- Clement de Chaisemartin & Luc Behaghel, 2015. "Estimating the effect of treatments allocated by randomized waiting lists," Papers 1511.01453, arXiv.org, revised Oct 2018.
- Clément Chaisemartin & Luc Behaghel, 2020. "Estimating the Effect of Treatments Allocated by Randomized Waiting Lists," Post-Print halshs-02973595, HAL.
- Clément Chaisemartin & Luc Behaghel, 2020. "Estimating the Effect of Treatments Allocated by Randomized Waiting Lists," PSE-Ecole d'économie de Paris (Postprint) halshs-02973595, HAL.
- Clément de Chaisemartin & Luc Behaghel, 2019. "Estimating the Effect of Treatments Allocated by Randomized Waiting Lists," NBER Working Papers 26282, National Bureau of Economic Research, Inc.
- Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021.
"Federated Causal Inference in Heterogeneous Observational Data,"
Papers
2107.11732, arXiv.org, revised Apr 2023.
- Xiong, Ruoxuan & Koenecke, Allison & Powell, Michael & Shen, Zhu & Vogelstein, Joshua T. & Athey, Susan, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Research Papers 3990, Stanford University, Graduate School of Business.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2018.
"Approximate residual balancing: debiased inference of average treatment effects in high dimensions,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2016. "Approximate Residual Balancing: De-Biased Inference of Average Treatment Effects in High Dimensions," Papers 1604.07125, arXiv.org, revised Jan 2018.
- Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022.
"Covariate distribution balance via propensity scores,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
- Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2018. "Covariate Distribution Balance via Propensity Scores," Papers 1810.01370, arXiv.org, revised Apr 2020.
- Sung Jae Jun & Sokbae Lee, 2024.
"Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
- Sung Jae Jun & Sokbae Lee, 2020. "Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions," Papers 2004.08318, arXiv.org, revised Oct 2023.
- Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.
- Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021.
"Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence,"
The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," IZA Discussion Papers 12039, Institute of Labor Economics (IZA).
- Lechner, Michael & Knaus, Michael C. & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," CEPR Discussion Papers 13402, C.E.P.R. Discussion Papers.
- Knaus, Michael C. & Lechner, Michael & anthony.strittmatter@unisg.ch, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Economics Working Paper Series 1817, University of St. Gallen, School of Economics and Political Science.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Papers 1810.13237, arXiv.org, revised Dec 2018.
- Wei Huang & Oliver Linton & Zheng Zhang, 2022.
"A Unified Framework for Specification Tests of Continuous Treatment Effect Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1817-1830, October.
- Wei Huang & Oliver Linton & Zheng Zhang, 2021. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Papers 2102.08063, arXiv.org, revised Sep 2021.
- Huang, W. & Linton, O. & Zhang, Z., 2021. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Cambridge Working Papers in Economics 2113, Faculty of Economics, University of Cambridge.
- Pons Rotger, Gabriel & Rosholm, Michael, 2020. "The Role of Beliefs in Long Sickness Absence: Experimental Evidence from a Psychological Intervention," IZA Discussion Papers 13582, Institute of Labor Economics (IZA).
- Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006.
"Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand,"
NBER Technical Working Papers
0330, National Bureau of Economic Research, Inc.
- Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in Estimation of Average Treatment Effects by Changing the Estimand," Working Papers 0608, University of Miami, Department of Economics.
- Crump, Richard K. & Hotz, V. Joseph & Imbens, Guido W. & Mitnik, Oscar A., 2006. "Moving the Goalposts: Addressing Limited Overlap in Estimation of Average Treatment Effects by Changing the Estimand," IZA Discussion Papers 2347, Institute of Labor Economics (IZA).
- Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009.
"Dealing with limited overlap in estimation of average treatment effects,"
Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
- Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2004. "Dealing with Limited Overlap in Estimation of Average Treatment Effects," Working Papers 0716, University of Miami, Department of Economics, revised 12 Jun 2007.
- Hotz, V. Joseph & Crump, Richard K. & Mitnik, Oscar A. & Imbens, Guido, 2009. "Dealing with Limited Overlap in Estimation of Average Treatment Effects," Scholarly Articles 3007645, Harvard University Department of Economics.
- Julius Owusu, 2023. "Randomization Inference of Heterogeneous Treatment Effects under Network Interference," Papers 2308.00202, arXiv.org, revised Jan 2025.
- Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
- Guido W. Imbens & Jeffrey M. Wooldridge, 2009.
"Recent Developments in the Econometrics of Program Evaluation,"
Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
- Guido M. Imbens & Jeffrey M. Wooldridge, 2008. "Recent Developments in the Econometrics of Program Evaluation," NBER Working Papers 14251, National Bureau of Economic Research, Inc.
- Wooldridge, Jeffrey M. & Imbens, Guido, 2009. "Recent Developments in the Econometrics of Program Evaluation," Scholarly Articles 3043416, Harvard University Department of Economics.
- Guido Imbens & Jeffrey M. Wooldridge, 2008. "Recent developments in the econometrics of program evaluation," CeMMAP working papers CWP24/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Imbens, Guido W. & Wooldridge, Jeffrey M., 2008. "Recent Developments in the Econometrics of Program Evaluation," IZA Discussion Papers 3640, Institute of Labor Economics (IZA).
- Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
- Michael C Knaus, 2022.
"Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Knaus, Michael C., 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Economics Working Paper Series 2004, University of St. Gallen, School of Economics and Political Science.
- Knaus, Michael C., 2020. "Double Machine Learning Based Program Evaluation under Unconfoundedness," IZA Discussion Papers 13051, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
- Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1504.01132. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.