IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1803.00149.html
   My bibliography  Save this paper

Deep Learning for Causal Inference

Author

Listed:
  • Vikas Ramachandra

Abstract

In this paper, we propose deep learning techniques for econometrics, specifically for causal inference and for estimating individual as well as average treatment effects. The contribution of this paper is twofold: 1. For generalized neighbor matching to estimate individual and average treatment effects, we analyze the use of autoencoders for dimensionality reduction while maintaining the local neighborhood structure among the data points in the embedding space. This deep learning based technique is shown to perform better than simple k nearest neighbor matching for estimating treatment effects, especially when the data points have several features/covariates but reside in a low dimensional manifold in high dimensional space. We also observe better performance than manifold learning methods for neighbor matching. 2. Propensity score matching is one specific and popular way to perform matching in order to estimate average and individual treatment effects. We propose the use of deep neural networks (DNNs) for propensity score matching, and present a network called PropensityNet for this. This is a generalization of the logistic regression technique traditionally used to estimate propensity scores and we show empirically that DNNs perform better than logistic regression at propensity score matching. Code for both methods will be made available shortly on Github at: https://github.com/vikas84bf

Suggested Citation

  • Vikas Ramachandra, 2018. "Deep Learning for Causal Inference," Papers 1803.00149, arXiv.org.
  • Handle: RePEc:arx:papers:1803.00149
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1803.00149
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Susan Athey & Guido Imbens, 2015. "Recursive Partitioning for Heterogeneous Causal Effects," Papers 1504.01132, arXiv.org, revised Dec 2015.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    2. Michael Lechner & Jana Mareckova, 2022. "Modified Causal Forest," Papers 2209.03744, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
    2. Nils Droste & Claudia Becker & Irene Ring & Rui Santos, 2018. "Decentralization Effects in Ecological Fiscal Transfers: A Bayesian Structural Time Series Analysis for Portugal," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(4), pages 1027-1051, December.
    3. Vikas Ramachandra, 2018. "Causal Inference for Survival Analysis," Papers 1803.08218, arXiv.org.
    4. Susan Athey & Guido Imbens, 2016. "The Econometrics of Randomized Experiments," Papers 1607.00698, arXiv.org.
    5. Daniel Runfola & Ariel BenYishay & Jeffery Tanner & Graeme Buchanan & Jyoteshwar Nagol & Matthias Leu & Seth Goodman & Rachel Trichler & Robert Marty, 2017. "A Top-Down Approach to Estimating Spatially Heterogeneous Impacts of Development Aid on Vegetative Carbon Sequestration," Sustainability, MDPI, vol. 9(3), pages 1-9, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1803.00149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.