IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1503.00019.html
   My bibliography  Save this paper

Error analysis in Fourier methods for option pricing

Author

Listed:
  • Fabi'an Crocce
  • Juho Happola
  • Jonas Kiessling
  • Ra'ul Tempone

Abstract

We provide a bound for the error committed when using a Fourier method to price European options when the underlying follows an exponential \levy dynamic. The price of the option is described by a partial integro-differential equation (PIDE). Applying a Fourier transformation to the PIDE yields an ordinary differential equation that can be solved analytically in terms of the characteristic exponent of the \levy process. Then, a numerical inverse Fourier transform allows us to obtain the option price. We present a novel bound for the error and use this bound to set the parameters for the numerical method. We analyse the properties of the bound for a dissipative and pure-jump example. The bound presented is independent of the asymptotic behaviour of option prices at extreme asset prices. The error bound can be decomposed into a product of terms resulting from the dynamics and the option payoff, respectively. The analysis is supplemented by numerical examples that demonstrate results comparable to and superior to the existing literature.

Suggested Citation

  • Fabi'an Crocce & Juho Happola & Jonas Kiessling & Ra'ul Tempone, 2015. "Error analysis in Fourier methods for option pricing," Papers 1503.00019, arXiv.org, revised Nov 2015.
  • Handle: RePEc:arx:papers:1503.00019
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1503.00019
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(2), pages 427-429, April.
    2. Leif Andersen & Jesper Andreasen, 2000. "Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing," Review of Derivatives Research, Springer, vol. 4(3), pages 231-262, October.
    3. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    4. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    5. Dotsis, George & Psychoyios, Dimitris & Skiadopoulos, George, 2007. "An empirical comparison of continuous-time models of implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3584-3603, December.
    6. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    7. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(1), pages 223-229, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanda Chen & Zailei Cheng & Haixu Wang, 2023. "Option Pricing for the Variance Gamma Model: A New Perspective," Papers 2306.10659, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xun Li & Ping Lin & Xue-Cheng Tai & Jinghui Zhou, 2015. "Pricing Two-asset Options under Exponential L\'evy Model Using a Finite Element Method," Papers 1511.04950, arXiv.org.
    2. Carl Chiarella & Boda Kang & Gunter H. Meyer & Andrew Ziogas, 2009. "The Evaluation Of American Option Prices Under Stochastic Volatility And Jump-Diffusion Dynamics Using The Method Of Lines," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-425.
    3. Kuldip Singh Patel & Mani Mehra, 2018. "Fourth-Order Compact Scheme For Option Pricing Under The Merton’S And Kou’S Jump-Diffusion Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-26, June.
    4. Yingzi Chen & Wansheng Wang & Aiguo Xiao, 2019. "An Efficient Algorithm for Options Under Merton’s Jump-Diffusion Model on Nonuniform Grids," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1565-1591, April.
    5. Kuldip Singh Patel & Mani Mehra, 2018. "Fourth order compact scheme for option pricing under Merton and Kou jump-diffusion models," Papers 1804.07534, arXiv.org.
    6. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    7. Carl Chiarella & Andrew Ziogas, 2009. "American Call Options Under Jump-Diffusion Processes - A Fourier Transform Approach," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(1), pages 37-79.
    8. Tim Leung & Marco Santoli, 2014. "Accounting for earnings announcements in the pricing of equity options," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-46.
    9. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2016. "Numerical stability of a hybrid method for pricing options," Papers 1603.07225, arXiv.org, revised Dec 2019.
    10. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2019. "Numerical Stability Of A Hybrid Method For Pricing Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-46, November.
    11. Oleg Kudryavtsev & Antonino Zanette, 2013. "Efficient pricing of swing options in L�vy-driven models," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 627-635, March.
    12. Yulian Fan & Huadong Zhang, 2017. "The pricing of average options with jump diffusion processes in the uncertain volatility model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-31, March.
    13. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    14. Karel in 't Hout & Pieter Lamotte, 2022. "Efficient numerical valuation of European options under the two-asset Kou jump-diffusion model," Papers 2207.10060, arXiv.org, revised May 2023.
    15. Windcliff, H. & Forsyth, P.A. & Vetzal, K.R., 2006. "Pricing methods and hedging strategies for volatility derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 409-431, February.
    16. Thai Nguyen, 2016. "Optimal investment and consumption with downside risk constraint in jump-diffusion models," Papers 1604.05584, arXiv.org.
    17. Volk-Makarewicz, Warren & Borovkova, Svetlana & Heidergott, Bernd, 2022. "Assessing the impact of jumps in an option pricing model: A gradient estimation approach," European Journal of Operational Research, Elsevier, vol. 298(2), pages 740-751.
    18. Fang, Fang & Oosterlee, Kees, 2008. "Pricing Early-Exercise and Discrete Barrier Options by Fourier-Cosine Series Expansions," MPRA Paper 9248, University Library of Munich, Germany.
    19. Ron Chan & Simon Hubbert, 2014. "Options pricing under the one-dimensional jump-diffusion model using the radial basis function interpolation scheme," Review of Derivatives Research, Springer, vol. 17(2), pages 161-189, July.
    20. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1503.00019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.