IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1501.07404.html
   My bibliography  Save this paper

Liquidity costs: a new numerical methodology and an empirical study

Author

Listed:
  • Christophe Michel
  • Victor Reutenauer
  • Denis Talay
  • Etienne Tanr'e

Abstract

We consider rate swaps which pay a fixed rate against a floating rate in presence of bid-ask spread costs. Even for simple models of bid-ask spread costs, there is no explicit strategy optimizing an expected function of the hedging error. We here propose an efficient algorithm based on the stochastic gradient method to compute an approximate optimal strategy without solving a stochastic control problem. We validate our algorithm by numerical experiments. We also develop several variants of the algorithm and discuss their performances in terms of the numerical parameters and the liquidity cost.

Suggested Citation

  • Christophe Michel & Victor Reutenauer & Denis Talay & Etienne Tanr'e, 2015. "Liquidity costs: a new numerical methodology and an empirical study," Papers 1501.07404, arXiv.org, revised Dec 2015.
  • Handle: RePEc:arx:papers:1501.07404
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1501.07404
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    2. Babbs, Simon H. & Nowman, K. Ben, 1999. "Kalman Filtering of Generalized Vasicek Term Structure Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(1), pages 115-130, March.
    3. Lelong, Jérôme, 2008. "Almost sure convergence of randomly truncated stochastic algorithms under verifiable conditions," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2632-2636, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophe Michel & Victor Reutenauer & Denis Talay & Etienne Tanré, 2016. "Liquidity costs: a new numerical methodology and an empirical study," Post-Print hal-01098096, HAL.
    2. Januj Juneja, 2015. "An evaluation of alternative methods used in the estimation of Gaussian term structure models," Review of Quantitative Finance and Accounting, Springer, vol. 44(1), pages 1-24, January.
    3. Driessen, Joost & Melenberg, Bertrand & Nijman, Theo, 2005. "Testing affine term structure models in case of transaction costs," Journal of Econometrics, Elsevier, vol. 126(1), pages 201-232, May.
    4. Peter Christoffersen & Christian Dorion & Kris Jacobs & Lotfi Karoui, 2014. "Nonlinear Kalman Filtering in Affine Term Structure Models," Management Science, INFORMS, vol. 60(9), pages 2248-2268, September.
    5. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    6. Georgina Onuma Kalu & Chinemerem Dennis Ikpe & Benjamin Ifeanyichukwu Oruh & Samuel Asante Gyamerah, 2020. "State Space Vasicek Model of a Longevity Bond," Papers 2011.12753, arXiv.org.
    7. Aït-Sahalia, Yacine & Kimmel, Robert L., 2010. "Estimating affine multifactor term structure models using closed-form likelihood expansions," Journal of Financial Economics, Elsevier, vol. 98(1), pages 113-144, October.
    8. Junker, Markus & Szimayer, Alex & Wagner, Niklas, 2006. "Nonlinear term structure dependence: Copula functions, empirics, and risk implications," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1171-1199, April.
    9. Giulio Tarditi, 2011. "Affine Term Structure Constraints on Euribor data," Department of Economics University of Siena 613, Department of Economics, University of Siena.
    10. Sanford, Andrew D. & Martin, Gael M., 2005. "Simulation-based Bayesian estimation of an affine term structure model," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 527-554, April.
    11. Rihab Bedoui & Islem Kedidi, 2018. "Modeling Longevity Risk using Consistent Dynamics Affine Mortality Models," Working Papers hal-01678050, HAL.
    12. J.Marcelo Ochoa, 2006. "An interpretation of an affine term structure model of Chile," Estudios de Economia, University of Chile, Department of Economics, vol. 33(2 Year 20), pages 155-184, December.
    13. Wolfgang Lemke & Deutsche Bundesbank, 2006. "Term Structure Modeling and Estimation in a State Space Framework," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-28344-7, October.
    14. Michael A H Dempster & Elena A Medova & Michael Villaverde, 2010. "Long-term interest rates and consol bond valuation," Journal of Asset Management, Palgrave Macmillan, vol. 11(2), pages 113-135, June.
    15. Choong Tze Chua & Dean Foster & Krishna Ramaswamy & Robert Stine, 2008. "A Dynamic Model for the Forward Curve," The Review of Financial Studies, Society for Financial Studies, vol. 21(1), pages 265-310, January.
    16. Mellios, Constantin & Six, Pierre & Lai, Anh Ngoc, 2016. "Dynamic speculation and hedging in commodity futures markets with a stochastic convenience yield," European Journal of Operational Research, Elsevier, vol. 250(2), pages 493-504.
    17. Chen, Ren-Raw & Liu, Bo & Cheng, Xiaolin, 2010. "Pricing the term structure of inflation risk premia: Theory and evidence from TIPS," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 702-721, September.
    18. Driessen, Joost & Klaassen, Pieter & Melenberg, Bertrand, 2003. "The Performance of Multi-Factor Term Structure Models for Pricing and Hedging Caps and Swaptions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(3), pages 635-672, September.
    19. Tunaru, Diana, 2017. "Gaussian estimation and forecasting of the U.K. yield curve with multi-factor continuous-time models," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 119-129.
    20. Blackburn, Craig & Sherris, Michael, 2013. "Consistent dynamic affine mortality models for longevity risk applications," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 64-73.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1501.07404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.