IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i16p2632-2636.html
   My bibliography  Save this article

Almost sure convergence of randomly truncated stochastic algorithms under verifiable conditions

Author

Listed:
  • Lelong, Jérôme

Abstract

In this paper, we are interested in the almost sure convergence of randomly truncated stochastic algorithms. In their pioneering work Chen and Zhu [Chen, H., Zhu, Y., 1986. Stochastic Approximation Procedure with Randomly Varying Truncations. In: Scientia Sinica Series.] required that the family of the noise terms is summable to ensure the convergence. In our paper, we present a new convergence theorem which extends the already known results by making vanish this condition on the noise terms -- a condition which is quite hard to check in practice. The aim of this work is to prove an almost sure convergence result for randomly truncated stochastic algorithms under assumptions expressed independently of the algorithm paths so that the conditions can easily be verified in practical applications.

Suggested Citation

  • Lelong, Jérôme, 2008. "Almost sure convergence of randomly truncated stochastic algorithms under verifiable conditions," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2632-2636, November.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:16:p:2632-2636
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00171-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Devang Sinha & Siddhartha P. Chakrabarty, 2022. "Multilevel Monte Carlo and its Applications in Financial Engineering," Papers 2209.14549, arXiv.org.
    2. Frikha Noufel & Sagna Abass, 2012. "Quantization based recursive importance sampling," Monte Carlo Methods and Applications, De Gruyter, vol. 18(4), pages 287-326, December.
    3. Ahmed Kebaier & J'er^ome Lelong, 2015. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Papers 1510.03590, arXiv.org, revised Jul 2017.
    4. Ahmed Kebaier & Jérôme Lelong, 2017. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Working Papers hal-01214840, HAL.
    5. Teo Sharia, 2014. "Truncated stochastic approximation with moving bounds: convergence," Statistical Inference for Stochastic Processes, Springer, vol. 17(2), pages 163-179, July.
    6. Devang Sinha & Siddhartha P. Chakrabarty, 2022. "Multilevel Richardson-Romberg and Importance Sampling in Derivative Pricing," Papers 2209.00821, arXiv.org.
    7. Laetitia Badouraly Kassim & Jérôme Lelong & Imane Loumrhari, 2015. "Importance sampling for jump processes and applications to finance," Post-Print hal-00842362, HAL.
    8. Christophe Michel & Victor Reutenauer & Denis Talay & Etienne Tanr'e, 2015. "Liquidity costs: a new numerical methodology and an empirical study," Papers 1501.07404, arXiv.org, revised Dec 2015.
    9. Christophe Michel & Victor Reutenauer & Denis Talay & Etienne Tanré, 2016. "Liquidity costs: a new numerical methodology and an empirical study," Post-Print hal-01098096, HAL.
    10. repec:hal:wpaper:hal-00842362 is not listed on IDEAS
    11. Laetitia Badouraly Kassim & J'er^ome Lelong & Imane Loumrhari, 2013. "Importance sampling for jump processes and applications to finance," Papers 1307.2218, arXiv.org.
    12. Ahmed Kebaier & Jérôme Lelong, 2018. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Post-Print hal-01214840, HAL.
    13. Cénac P. & Maume-Deschamps V. & Prieur C., 2012. "Some multivariate risk indicators: Minimization by using a Kiefer–Wolfowitz approach to the mirror stochastic algorithm," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 47-72, March.
    14. Lapeyre Bernard & Lelong Jérôme, 2011. "A framework for adaptive Monte Carlo procedures," Monte Carlo Methods and Applications, De Gruyter, vol. 17(1), pages 77-98, January.
    15. Ahmed Kebaier & Jérôme Lelong, 2018. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 611-641, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:16:p:2632-2636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.