IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1305.3988.html
   My bibliography  Save this paper

A First-Order BSPDE for Swing Option Pricing

Author

Listed:
  • Christian Bender
  • Nikolai Dokuchaev

Abstract

We study an optimal control problem related to swing option pricing in a general non-Markovian setting in continuous time. As a main result we show that the value process solves a first-order non-linear backward stochastic partial differential equation. Based on this result we can characterize the set of optimal controls and derive a dual minimization problem.

Suggested Citation

  • Christian Bender & Nikolai Dokuchaev, 2013. "A First-Order BSPDE for Swing Option Pricing," Papers 1305.3988, arXiv.org.
  • Handle: RePEc:arx:papers:1305.3988
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1305.3988
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amina Bouzguenda Zeghal & Mohamed Mnif, 2006. "Optimal Multiple Stopping And Valuation Of Swing Options In Lévy Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(08), pages 1267-1297.
    2. John Schoenmakers, 2012. "A pure martingale dual for multiple stopping," Finance and Stochastics, Springer, vol. 16(2), pages 319-334, April.
    3. René Carmona & Nizar Touzi, 2008. "Optimal Multiple Stopping And Valuation Of Swing Options," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 239-268, April.
    4. Patrick Jaillet & Ehud I. Ronn & Stathis Tompaidis, 2004. "Valuation of Commodity-Based Swing Options," Management Science, INFORMS, vol. 50(7), pages 909-921, July.
    5. Nikolai Dokuchaev, 2010. "Controlled options: derivatives with added flexibility," Papers 1012.1412, arXiv.org, revised Oct 2011.
    6. David B. Brown & James E. Smith & Peng Sun, 2010. "Information Relaxations and Duality in Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 58(4-part-1), pages 785-801, August.
    7. N. Meinshausen & B. M. Hambly, 2004. "Monte Carlo Methods For The Valuation Of Multiple‐Exercise Options," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 557-583, October.
    8. Christian Bender, 2011. "Dual pricing of multi-exercise options under volume constraints," Finance and Stochastics, Springer, vol. 15(1), pages 1-26, January.
    9. Christophe Barrera-Esteve & Florent Bergeret & Charles Dossal & Emmanuel Gobet & Asma Meziou & Rémi Munos & Damien Reboul-Salze, 2006. "Numerical Methods for the Pricing of Swing Options: A Stochastic Control Approach," Methodology and Computing in Applied Probability, Springer, vol. 8(4), pages 517-540, December.
    10. Martin B. Haugh & Leonid Kogan, 2004. "Pricing American Options: A Duality Approach," Operations Research, INFORMS, vol. 52(2), pages 258-270, April.
    11. L. C. G. Rogers, 2002. "Monte Carlo valuation of American options," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 271-286, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolai Dokuchaev, 2016. "First Order BSPDEs in higher dimension for optimal control problems," Papers 1603.06825, arXiv.org, revised Oct 2018.
    2. Christian Bender & Nikolai Dokuchaev, 2014. "A First-Order BSPDE for Swing Option Pricing: Classical Solutions," Papers 1402.6444, arXiv.org, revised Nov 2014.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Essis-Breton & Patrice Gaillardetz, 2020. "Fast Lower and Upper Estimates for the Price of Constrained Multiple Exercise American Options by Single Pass Lookahead Search and Nearest-Neighbor Martingale," Papers 2002.11258, arXiv.org.
    2. Juri Hinz & Jeremy Yee, 2017. "An Algorithmic Approach to Optimal Asset Liquidation Problems," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(2), pages 109-129, June.
    3. John Schoenmakers, 2012. "A pure martingale dual for multiple stopping," Finance and Stochastics, Springer, vol. 16(2), pages 319-334, April.
    4. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    5. Guoming Lai & François Margot & Nicola Secomandi, 2010. "An Approximate Dynamic Programming Approach to Benchmark Practice-Based Heuristics for Natural Gas Storage Valuation," Operations Research, INFORMS, vol. 58(3), pages 564-582, June.
    6. Aleksandrov, Nikolay & Espinoza, Raphael & Gyurkó, Lajos, 2013. "Optimal oil production and the world supply of oil," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1248-1263.
    7. Tiziano De Angelis & Yerkin Kitapbayev, 2018. "On the Optimal Exercise Boundaries of Swing Put Options," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 252-274, February.
    8. N. Aleksandrov & B. Hambly, 2010. "A dual approach to multiple exercise option problems under constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(3), pages 503-533, June.
    9. R. Mark Reesor & T. James Marshall, 2020. "Forest of Stochastic Trees: A Method for Valuing Multiple Exercise Options," JRFM, MDPI, vol. 13(5), pages 1-31, May.
    10. Soren Christensen & Albrecht Irle & Stephan Jurgens, 2012. "Optimal multiple stopping with random waiting times," Papers 1205.1966, arXiv.org.
    11. Helin Zhu & Fan Ye & Enlu Zhou, 2013. "Fast Estimation of True Bounds on Bermudan Option Prices under Jump-diffusion Processes," Papers 1305.4321, arXiv.org.
    12. Belomestny, Denis & Kolodko, Anastasia & Schoenmakers, John G. M., 2009. "Regression methods for stochastic control problems and their convergence analysis," SFB 649 Discussion Papers 2009-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. J. Lars Kirkby & Shi-Jie Deng, 2019. "Swing Option Pricing By Dynamic Programming With B-Spline Density Projection," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-53, December.
    14. Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2013. "Valuing modular nuclear power plants in finite time decision horizon," Energy Economics, Elsevier, vol. 36(C), pages 625-636.
    15. Dahlgren, Eric & Leung, Tim, 2015. "An optimal multiple stopping approach to infrastructure investment decisions," Journal of Economic Dynamics and Control, Elsevier, vol. 53(C), pages 251-267.
    16. Tim Leung & Kazutoshi Yamazaki & Hongzhong Zhang, 2015. "Optimal Multiple Stopping with Negative Discount Rate and Random Refraction Times under Levy Models," Papers 1505.07313, arXiv.org.
    17. Christian Bender & Christian Gärtner & Nikolaus Schweizer, 2018. "Pathwise Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 965-965, August.
    18. Tiziano De Angelis & Yerkin Kitapbayev, 2014. "On the optimal exercise boundaries of swing put options," Papers 1407.6860, arXiv.org, revised Jan 2017.
    19. Hendrik Kohrs & Hermann Mühlichen & Benjamin R. Auer & Frank Schuhmacher, 2019. "Pricing and risk of swing contracts in natural gas markets," Review of Derivatives Research, Springer, vol. 22(1), pages 77-167, April.
    20. Tim Leung & Kazutoshi Yamazaki & Hongzhong Zhang, 2015. "An Analytic Recursive Method For Optimal Multiple Stopping: Canadization And Phase-Type Fitting," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1-31.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1305.3988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.