IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1406.5718.html
   My bibliography  Save this paper

An Unconventional Attempt to Tame Mandelbrot's Grey Swans

Author

Listed:
  • Denis M. Filatov
  • Maksim A. Vanyarkho

Abstract

We suggest an original physical approach to describe the mechanism of market pricing. The core of our approach is to consider pricing at different time scales separately, using independent equations of motion. Such an approach leads to a pricing model that not only allows estimating the volatility of future market prices, but also permits forecasting the direction of the price move. Alongside with that, it is crucial that our model implies no calibration on historical market data. And last but not least, properties of the model's solution are consistent with those of real markets: it has fat tails, possesses scaling and evinces nonlinear market memory. As our model has been derived with the tip of the pen, it may be not a yet another confirmation of the known empirical facts, but a theoretical justification thereto. Tests on real financial instruments prove the competence of our approach.

Suggested Citation

  • Denis M. Filatov & Maksim A. Vanyarkho, 2014. "An Unconventional Attempt to Tame Mandelbrot's Grey Swans," Papers 1406.5718, arXiv.org.
  • Handle: RePEc:arx:papers:1406.5718
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1406.5718
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Contreras, Mauricio & Pellicer, Rely & Villena, Marcelo & Ruiz, Aaron, 2010. "A quantum model of option pricing: When Black–Scholes meets Schrödinger and its semi-classical limit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5447-5459.
    2. Gallegati, Mauro & Keen, Steve & Lux, Thomas & Ormerod, Paul, 2006. "Worrying trends in econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 1-6.
    3. J. B. Glattfelder & A. Dupuis & R. B. Olsen, 2010. "Patterns in high-frequency FX data: discovery of 12 empirical scaling laws," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 599-614.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kartono, Agus & Solekha, Siti & Sumaryada, Tony & Irmansyah,, 2021. "Foreign currency exchange rate prediction using non-linear Schrödinger equations with economic fundamental parameters," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Will Hicks, 2020. "Pseudo-Hermiticity, Martingale Processes and Non-Arbitrage Pricing," Papers 2009.00360, arXiv.org, revised Apr 2021.
    3. Wang, Yougui & Stanley, H.E., 2009. "Statistical approach to partial equilibrium analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1173-1180.
    4. Edward P. K. Tsang & Ran Tao & Antoaneta Serguieva & Shuai Ma, 2017. "Profiling high-frequency equity price movements in directional changes," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 217-225, February.
    5. Venkatasubramanian, Venkat & Luo, Yu & Sethuraman, Jay, 2015. "How much inequality in income is fair? A microeconomic game theoretic perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 435(C), pages 120-138.
    6. Monira Essa Aloud, 2016. "Time Series Analysis Indicators under Directional Changes: The Case of Saudi Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 55-64.
    7. Monira Essa Aloud, 2016. "Profitability of Directional Change Based Trading Strategies: The Case of Saudi Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 87-95.
    8. Jovanovic, Franck & Schinckus, Christophe, 2016. "Breaking down the barriers between econophysics and financial economics," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 256-266.
    9. Barberis, Eduardo & Freddi, Daniela & Giammetti, Raffaele & Polidori, Paolo & Teobaldelli, Désirée & Viganò, Elena, 2020. "Trade Relationships in the European Pork Value Chain: A Network Analysis," Economia agro-alimentare / Food Economy, Italian Society of Agri-food Economics/Società Italiana di Economia Agro-Alimentare (SIEA), vol. 22(1), May.
    10. Yuri Biondi & Simone Righi, 2019. "Inequality, mobility and the financial accumulation process: a computational economic analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(1), pages 93-119, March.
    11. Ellis Scharfenaker, 2022. "Statistical Equilibrium Methods In Analytical Political Economy," Journal of Economic Surveys, Wiley Blackwell, vol. 36(2), pages 276-309, April.
    12. Mimkes, Jürgen, 2010. "Stokes integral of economic growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1665-1676.
    13. Aloud, Monira & Tsang, Edward & Olsen, Richard & Dupuis, Alexandre, 2011. "A directional-change events approach for studying financial time series," Economics Discussion Papers 2011-28, Kiel Institute for the World Economy (IfW Kiel).
    14. Contreras, Mauricio & Pellicer, Rely & Villena, Marcelo, 2017. "Dynamic optimization and its relation to classical and quantum constrained systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 12-25.
    15. Fix, Blair, 2017. "Evidence for a Power Theory of Personal Income Distribution," Working Papers on Capital as Power 2017/03, Capital As Power - Toward a New Cosmology of Capitalism.
    16. Tomson Ogwang, 2011. "Power laws in top wealth distributions: evidence from Canada," Empirical Economics, Springer, vol. 41(2), pages 473-486, October.
    17. Rotundo, Giulia, 2014. "Black–Scholes–Schrödinger–Zipf–Mandelbrot model framework for improving a study of the coauthor core score," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 296-301.
    18. Chakrabarti, Anindya S. & Chakrabarti, Bikas K., 2010. "Statistical theories of income and wealth distribution," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-31.
    19. G. Dimarco & L. Pareschi & G. Toscani & M. Zanella, 2020. "Wealth distribution under the spread of infectious diseases," Papers 2004.13620, arXiv.org.
    20. Bucsa, G. & Jovanovic, F. & Schinckus, C., 2011. "A unified model for price return distributions used in econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3435-3443.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1406.5718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.